Type of Publication: | Journal article |
Publication status: | Published |
Author: | Sroczinski, Matthias |
Year of publication: | 2019 |
Published in: | Archive for Rational Mechanics and Analysis ; 231 (2019), 1. - pp. 91-113. - ISSN 0003-9527. - eISSN 1432-0673 |
DOI (citable link): | https://dx.doi.org/10.1007/s00205-018-1274-9 |
Summary: |
This paper shows global-in-time existence and asymptotic decay of small solutions to the Navier–Stokes–Fourier equations for a class of viscous, heat-conductive relativistic fluids. As this second-order system is symmetric hyperbolic, existence and uniqueness on a short time interval follow from the work of Hughes, Kato and Marsden. In this paper it is proven that solutions which are close to a homogeneous reference state can be extended globally and decay to the reference state. The proof combines decay results for the linearization with refined Kawashima-type estimates of the nonlinear terms.
|
Subject (DDC): | 510 Mathematics |
Bibliography of Konstanz: | Yes |
Refereed: | Unknown |
Files | Size | Format | View |
---|---|---|---|
There are no files associated with this item. |
SROCZINSKI, Matthias, 2019. Asymptotic Stability of Homogeneous States in the Relativistic Dynamics of Viscous, Heat-Conductive Fluids. In: Archive for Rational Mechanics and Analysis. 231(1), pp. 91-113. ISSN 0003-9527. eISSN 1432-0673. Available under: doi: 10.1007/s00205-018-1274-9
@article{Sroczinski2019Asymp-39488.2, title={Asymptotic Stability of Homogeneous States in the Relativistic Dynamics of Viscous, Heat-Conductive Fluids}, year={2019}, doi={10.1007/s00205-018-1274-9}, number={1}, volume={231}, issn={0003-9527}, journal={Archive for Rational Mechanics and Analysis}, pages={91--113}, author={Sroczinski, Matthias} }
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/39488.2"> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-02-21T10:43:32Z</dcterms:available> <dc:creator>Sroczinski, Matthias</dc:creator> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/39"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/39"/> <dcterms:issued>2019</dcterms:issued> <dc:language>eng</dc:language> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/39488.2"/> <dc:contributor>Sroczinski, Matthias</dc:contributor> <dcterms:abstract xml:lang="eng">This paper shows global-in-time existence and asymptotic decay of small solutions to the Navier–Stokes–Fourier equations for a class of viscous, heat-conductive relativistic fluids. As this second-order system is symmetric hyperbolic, existence and uniqueness on a short time interval follow from the work of Hughes, Kato and Marsden. In this paper it is proven that solutions which are close to a homogeneous reference state can be extended globally and decay to the reference state. The proof combines decay results for the linearization with refined Kawashima-type estimates of the nonlinear terms.</dcterms:abstract> <dc:rights>terms-of-use</dc:rights> <dcterms:title>Asymptotic Stability of Homogeneous States in the Relativistic Dynamics of Viscous, Heat-Conductive Fluids</dcterms:title> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-02-21T10:43:32Z</dc:date> </rdf:Description> </rdf:RDF>