Type of Publication: | Journal article |
Publication status: | Published |
URI (citable link): | http://nbn-resolving.de/urn:nbn:de:bsz:352-0-413128 |
Author: | Bechinger, Clemens |
Year of publication: | 2002 |
Published in: | Current Opinion in Colloid & Interface Science ; 7 (2002), 3-4. - pp. 204-209. - ISSN 1359-0294. - eISSN 1879-0399 |
DOI (citable link): | https://dx.doi.org/10.1016/S1359-0294(02)00055-9 |
Summary: |
In the presence of geometric confinements such as topographically patterned surfaces, strong light fields, or channels the phase behavior and the dynamical properties of colloidal suspensions are strongly modified in comparison to the bulk properties. Because such geometric confinements play an important role in many physical, biological and chemical processes, investigations of the properties of colloidal suspensions in such situations may help to obtain a better understanding of, e.g. transport of particles through cell membranes or catalytic reactions in zeolitic materials.
|
Subject (DDC): | 530 Physics |
Keywords: | Colloidal suspensions Two-dimensional phase transitions Patterned substrates Entropic forces Optical tweezers Single-file diffusion |
Link to License: | In Copyright |
BECHINGER, Clemens, 2002. Colloidal suspensions in confined geometries. In: Current Opinion in Colloid & Interface Science. 7(3-4), pp. 204-209. ISSN 1359-0294. eISSN 1879-0399. Available under: doi: 10.1016/S1359-0294(02)00055-9
@article{Bechinger2002-08Collo-39437, title={Colloidal suspensions in confined geometries}, year={2002}, doi={10.1016/S1359-0294(02)00055-9}, number={3-4}, volume={7}, issn={1359-0294}, journal={Current Opinion in Colloid & Interface Science}, pages={204--209}, author={Bechinger, Clemens} }
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/39437"> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-06-27T16:08:51Z</dcterms:available> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/41"/> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/41"/> <dc:language>eng</dc:language> <dc:creator>Bechinger, Clemens</dc:creator> <dcterms:title>Colloidal suspensions in confined geometries</dcterms:title> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/39437"/> <dcterms:issued>2002-08</dcterms:issued> <dcterms:abstract xml:lang="eng">In the presence of geometric confinements such as topographically patterned surfaces, strong light fields, or channels the phase behavior and the dynamical properties of colloidal suspensions are strongly modified in comparison to the bulk properties. Because such geometric confinements play an important role in many physical, biological and chemical processes, investigations of the properties of colloidal suspensions in such situations may help to obtain a better understanding of, e.g. transport of particles through cell membranes or catalytic reactions in zeolitic materials.</dcterms:abstract> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-06-27T16:08:51Z</dc:date> <dc:rights>terms-of-use</dc:rights> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/39437/1/Bechinger_0-413128.pdf"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/39437/1/Bechinger_0-413128.pdf"/> <dc:contributor>Bechinger, Clemens</dc:contributor> </rdf:Description> </rdf:RDF>
Bechinger_0-413128.pdf | 198 |