Type of Publication: | Working Paper/Technical Report |
Publication status: | Published |
URI (citable link): | http://nbn-resolving.de/urn:nbn:de:bsz:352-0-410986 |
Author: | Sani, Marcello |
Year of publication: | 2017 |
Summary: |
We consider hypersurfaces which are graphs over a sphere evolving in a cone, driven by the (-1/n)-th power of the Gauß curvature and subject to a Neumann boundary condition. We show existence for all times and convergence after rescaling, to a subset of a sphere.
|
MSC Classification: | 53C44 |
Subject (DDC): | 510 Mathematics |
Keywords: | Inverse Gauß curvature flow, cone, Neumann boundary value problem, Monge-Ampère type equations |
Link to License: | In Copyright |
Bibliography of Konstanz: | Yes |
SANI, Marcello, 2017. An inverse Gauss curvature flow for hypersurfaces expanding in a cone
@techreport{Sani2017inver-39370, title={An inverse Gauss curvature flow for hypersurfaces expanding in a cone}, year={2017}, author={Sani, Marcello} }
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/39370"> <dcterms:issued>2017</dcterms:issued> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/39"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:rights>terms-of-use</dc:rights> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/39370/3/Sani_0-410986.pdf"/> <dc:creator>Sani, Marcello</dc:creator> <dcterms:abstract xml:lang="eng">We consider hypersurfaces which are graphs over a sphere evolving in a cone, driven by the (-1/n)-th power of the Gauß curvature and subject to a Neumann boundary condition. We show existence for all times and convergence after rescaling, to a subset of a sphere.</dcterms:abstract> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/39"/> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-06-23T14:10:34Z</dc:date> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/39370/3/Sani_0-410986.pdf"/> <dcterms:title>An inverse Gauss curvature flow for hypersurfaces expanding in a cone</dcterms:title> <dc:contributor>Sani, Marcello</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-06-23T14:10:34Z</dcterms:available> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/39370"/> <dc:language>eng</dc:language> </rdf:Description> </rdf:RDF>
Sani_0-410986.pdf | 174 |