Type of Publication: | Journal article |
Publication status: | Published |
URI (citable link): | http://nbn-resolving.de/urn:nbn:de:bsz:352-0-405968 |
Author: | Myint, Leslie; Kleensang, Andre; Zhao, Liang; Hartung, Thomas; Hansen, Kasper D. |
Year of publication: | 2017 |
Published in: | Analytical Chemistry ; 89 (2017), 6. - pp. 3517-3523. - ISSN 0003-2700. - eISSN 1520-6882 |
Pubmed ID: | 28221771 |
DOI (citable link): | https://dx.doi.org/10.1021/acs.analchem.6b04719 |
Summary: |
As mass spectrometry-based metabolomics becomes more widely used in biomedical research, it is important to revisit existing data analysis paradigms. Existing data preprocessing efforts have largely focused on methods which start by extracting features separately from each sample, followed by a subsequent attempt to group features across samples to facilitate comparisons. We show that this preprocessing approach leads to unnecessary variability in peak quantifications that adversely impacts downstream analysis. We present a new method, bakedpi, for the preprocessing of both centroid and profile mode metabolomics data that relies on an intensity-weighted bivariate kernel density estimation on a pooling of all samples to detect peaks. This new method reduces this unnecessary quantification variability and increases power in downstream differential analysis.
|
Subject (DDC): | 570 Biosciences, Biology |
Link to License: | In Copyright |
Bibliography of Konstanz: | Yes |
MYINT, Leslie, Andre KLEENSANG, Liang ZHAO, Thomas HARTUNG, Kasper D. HANSEN, 2017. Joint Bounding of Peaks Across Samples Improves Differential Analysis in Mass Spectrometry-Based Metabolomics. In: Analytical Chemistry. 89(6), pp. 3517-3523. ISSN 0003-2700. eISSN 1520-6882. Available under: doi: 10.1021/acs.analchem.6b04719
@article{Myint2017-03-21Joint-39013, title={Joint Bounding of Peaks Across Samples Improves Differential Analysis in Mass Spectrometry-Based Metabolomics}, year={2017}, doi={10.1021/acs.analchem.6b04719}, number={6}, volume={89}, issn={0003-2700}, journal={Analytical Chemistry}, pages={3517--3523}, author={Myint, Leslie and Kleensang, Andre and Zhao, Liang and Hartung, Thomas and Hansen, Kasper D.} }
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/39013"> <dc:creator>Zhao, Liang</dc:creator> <dc:contributor>Hartung, Thomas</dc:contributor> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/39013/1/Myint_0-405968.pdf"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/39013"/> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-05-23T08:53:09Z</dcterms:available> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-05-23T08:53:09Z</dc:date> <dc:rights>terms-of-use</dc:rights> <dcterms:abstract xml:lang="eng">As mass spectrometry-based metabolomics becomes more widely used in biomedical research, it is important to revisit existing data analysis paradigms. Existing data preprocessing efforts have largely focused on methods which start by extracting features separately from each sample, followed by a subsequent attempt to group features across samples to facilitate comparisons. We show that this preprocessing approach leads to unnecessary variability in peak quantifications that adversely impacts downstream analysis. We present a new method, bakedpi, for the preprocessing of both centroid and profile mode metabolomics data that relies on an intensity-weighted bivariate kernel density estimation on a pooling of all samples to detect peaks. This new method reduces this unnecessary quantification variability and increases power in downstream differential analysis.</dcterms:abstract> <dc:contributor>Hansen, Kasper D.</dc:contributor> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/39013/1/Myint_0-405968.pdf"/> <dc:creator>Kleensang, Andre</dc:creator> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dcterms:title>Joint Bounding of Peaks Across Samples Improves Differential Analysis in Mass Spectrometry-Based Metabolomics</dcterms:title> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/28"/> <dc:creator>Hansen, Kasper D.</dc:creator> <dcterms:issued>2017-03-21</dcterms:issued> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Myint, Leslie</dc:creator> <dc:contributor>Myint, Leslie</dc:contributor> <dc:language>eng</dc:language> <dc:contributor>Zhao, Liang</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/28"/> <dc:contributor>Kleensang, Andre</dc:contributor> <dc:creator>Hartung, Thomas</dc:creator> </rdf:Description> </rdf:RDF>
Myint_0-405968.pdf | 209 |