KOPS - Das Institutionelle Repositorium der Universität Konstanz

Duality for increasing convex functionals with countably many marginal constraints

Duality for increasing convex functionals with countably many marginal constraints

Zitieren

Dateien zu dieser Ressource

Dateien Größe Format Anzeige

Zu diesem Dokument gibt es keine Dateien.

BARTL, Daniel, Patrick CHERIDITO, Michael KUPPER, Ludovic TANGPI, 2017. Duality for increasing convex functionals with countably many marginal constraints. In: Banach Journal of Mathematical Analysis. 11(1), pp. 72-89. eISSN 1735-8787. Available under: doi: 10.1215/17358787-3750133

@article{Bartl2017-01Duali-38797, title={Duality for increasing convex functionals with countably many marginal constraints}, year={2017}, doi={10.1215/17358787-3750133}, number={1}, volume={11}, journal={Banach Journal of Mathematical Analysis}, pages={72--89}, author={Bartl, Daniel and Cheridito, Patrick and Kupper, Michael and Tangpi, Ludovic} }

<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/38797"> <dc:contributor>Tangpi, Ludovic</dc:contributor> <dc:contributor>Bartl, Daniel</dc:contributor> <dc:creator>Cheridito, Patrick</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-05-09T08:47:28Z</dc:date> <dc:creator>Tangpi, Ludovic</dc:creator> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/38797"/> <dcterms:title>Duality for increasing convex functionals with countably many marginal constraints</dcterms:title> <dcterms:issued>2017-01</dcterms:issued> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/39"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/39"/> <dc:creator>Kupper, Michael</dc:creator> <dc:contributor>Cheridito, Patrick</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-05-09T08:47:28Z</dcterms:available> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <dc:contributor>Kupper, Michael</dc:contributor> <dcterms:abstract xml:lang="eng">In this work we derive a convex dual representation for increasing convex functionals on a space of real-valued Borel measurable functions defined on a countable product of metric spaces. Our main assumption is that the functionals fulfill marginal constraints satisfying a certain tightness condition. In the special case where the marginal constraints are given by expectations or maxima of expectations, we obtain linear and sublinear versions of Kantorovich’s transport duality and the recently discovered martingale transport duality on products of countably many metric spaces.</dcterms:abstract> <dc:creator>Bartl, Daniel</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:language>eng</dc:language> </rdf:Description> </rdf:RDF>

Das Dokument erscheint in:

KOPS Suche


Stöbern

Mein Benutzerkonto