KOPS - Das Institutionelle Repositorium der Universität Konstanz

Impact of Extended Contact Cofiring on Multicrystalline Silicon Solar Cell Parameters

Impact of Extended Contact Cofiring on Multicrystalline Silicon Solar Cell Parameters

Zitieren

Dateien zu dieser Ressource

Dateien Größe Format Anzeige

Zu diesem Dokument gibt es keine Dateien.

PERAL, Ana, Amir DASTGHEIB-SHIRAZI, Vanesa FANO, Juan Carlos JIMENO, Giso HAHN, Carlos DEL CANIZO, 2017. Impact of Extended Contact Cofiring on Multicrystalline Silicon Solar Cell Parameters. In: IEEE Journal of Photovoltaics. 7(1), pp. 91-96. ISSN 2156-3381. eISSN 2156-3403. Available under: doi: 10.1109/JPHOTOV.2016.2621342

@article{Peral2017-01Impac-38785, title={Impact of Extended Contact Cofiring on Multicrystalline Silicon Solar Cell Parameters}, year={2017}, doi={10.1109/JPHOTOV.2016.2621342}, number={1}, volume={7}, issn={2156-3381}, journal={IEEE Journal of Photovoltaics}, pages={91--96}, author={Peral, Ana and Dastgheib-Shirazi, Amir and Fano, Vanesa and Jimeno, Juan Carlos and Hahn, Giso and del Canizo, Carlos} }

2017-05-08T14:28:03Z During the temperature spike of the contact cofiring step in a solar cell process, it has been shown that the concentration of lifetime-killer dissolved metallic impurities increases, while adding an annealing after the spike getters most of the dissolved impurities toward the phosphorus emitter, where they are less detrimental. The contact cofiring temperature profile, including the after-spike annealing, has been called extended contact cofiring, and it has also been proposed as a means to decrease the emitter saturation current density of highly doped emitters, thus benefiting a wide range of materials in terms of detrimental impurity content. The aim of the present work is to determine the effect of performing this additional annealing on contact quality and solar cell performance, looking for an optimal temperature profile for reduction of bulk and emitter recombination without affecting contact quality. It presents the effect of the extended cofiring step on fill factor, series resistance, and contact resistance of solar cells manufactured with different extended cofiring temperature profiles. Fill factor decreases when extended cofiring is performed. Series resistance and contact resistance increase during annealing, and this happens more dramatically when the temperature peak is decreased. Scanning electron microscopic images show silver crystallites in contact with silver bulk before the annealing that allow a direct current path, and silver crystallites totally surrounded by glass layer (>100 nm thick) after annealing. Glass layer redistribution and thickening at low temperatures at the semiconductor-metal interface can be related to the series resistance increase. Degradation of series resistance during the temperature spike, when it is below the optimum one, can also be attributed to an incomplete silicon nitride etching and silver crystallite formation. To make full use of the beneficial effects of annealing, screen-printing metallic paste development supporting lower temperatures without a thick glass layer growth is needed. Dastgheib-Shirazi, Amir Jimeno, Juan Carlos 2017-05-08T14:28:03Z del Canizo, Carlos del Canizo, Carlos Peral, Ana Fano, Vanesa Impact of Extended Contact Cofiring on Multicrystalline Silicon Solar Cell Parameters Dastgheib-Shirazi, Amir Jimeno, Juan Carlos eng Hahn, Giso 2017-01 Peral, Ana Hahn, Giso Fano, Vanesa

Das Dokument erscheint in:

KOPS Suche


Stöbern

Mein Benutzerkonto