Detecting optimality and extracting solutions in polynomial optimization with the truncated GNS construction

Lade...
Vorschaubild
Dateien
Lopez_0-406256.pdf
Lopez_0-406256.pdfGröße: 577.37 KBDownloads: 180
Datum
2017
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Publikationstyp
Preprint
Publikationsstatus
Submitted
Wird erscheinen in
Zusammenfassung

A basic closed semialgebraic subset of Rn is defined by simultaneous polynomial inequalities p1 ≥ 0,...,pm ≥ 0. We consider Lasserre's relaxation hierarchy to solve the problem of minimizing a polynomial over such a set. These relaxations give an increasing sequence of lower bounds of the infimum. In this paper we provide a new certificate for the optimal value of a Lasserre relaxation be the optimal value of the polynomial optimization problem. This certificate is that a modified version of an optimal solution of the Lasserre relaxation is a generalized Hankel matrix. This certificate is more general than the already known certificate of an optimal solution being flat. In case we have optimality we will extract the potencial minimizers with a truncated version of the Gelfand-Naimark-Segal construction on the optimal solution of the Lasserre relaxation. We prove also that the operators of this truncated construction commute if and only if the matrix of this modified optimal solution is a generalized Hankel matrix. This generalization of flatness will bring us to reprove a result of Curto and Fialkow on the existence of quadrature rule if the optimal solution is flat and a result of Xu and Mysovskikh on the existance of a Gaussian quadrature rule if the modified optimal solution is generalized Hankel matrix. At the end, we provide a numerical linear algebraic algorithm for dectecting optimality and extracting solutions of a polynomial optimization problem.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
510 Mathematik
Schlagwörter
moment relaxation, Lasserre relaxation, polynomial optimization, semidefinite programming, quadrature, truncated moment problem, GNS construction
Konferenz
Rezension
undefined / . - undefined, undefined
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Datensätze
Zitieren
ISO 690LOPEZ QUIJORNA, Maria, 2017. Detecting optimality and extracting solutions in polynomial optimization with the truncated GNS construction
BibTex
@unpublished{LopezQuijorna2017-04-06T22:22:55ZDetec-38689,
  year={2017},
  title={Detecting optimality and extracting solutions in polynomial optimization with the truncated GNS construction},
  author={Lopez Quijorna, Maria}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/38689">
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-05-02T14:43:10Z</dc:date>
    <dc:contributor>Lopez Quijorna, Maria</dc:contributor>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dcterms:title>Detecting optimality and extracting solutions in polynomial optimization with the truncated GNS construction</dcterms:title>
    <dc:creator>Lopez Quijorna, Maria</dc:creator>
    <dcterms:issued>2017-04-06T22:22:55Z</dcterms:issued>
    <dcterms:abstract xml:lang="eng">A basic closed semialgebraic subset of R&lt;sup&gt;n&lt;/sup&gt; is defined by simultaneous polynomial inequalities p&lt;sub&gt;1&lt;/sub&gt; ≥ 0,...,p&lt;sub&gt;m&lt;/sub&gt; ≥ 0. We consider Lasserre's relaxation hierarchy to solve the problem of minimizing a polynomial over such a set. These relaxations give an increasing sequence of lower bounds of the infimum. In this paper we provide a new certificate for the optimal value of a Lasserre relaxation be the optimal value of the polynomial optimization problem. This certificate is that a modified version of an optimal solution of the Lasserre relaxation is a generalized Hankel matrix. This certificate is more general than the already known certificate of an optimal solution being flat. In case we have optimality we will extract the potencial minimizers with a truncated version of the Gelfand-Naimark-Segal construction on the optimal solution of the Lasserre relaxation. We prove also that the operators of this truncated construction commute if and only if the matrix of this modified optimal solution is a generalized Hankel matrix. This generalization of flatness will bring us to reprove a result of Curto and Fialkow on the existence of quadrature rule if the optimal solution is flat and a result of Xu and Mysovskikh on the existance of a Gaussian quadrature rule if the modified optimal solution is generalized Hankel matrix. At the end, we provide a numerical linear algebraic algorithm for dectecting optimality and extracting solutions of a polynomial optimization problem.</dcterms:abstract>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:language>eng</dc:language>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/38689/3/Lopez_0-406256.pdf"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-05-02T14:43:10Z</dcterms:available>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/38689/3/Lopez_0-406256.pdf"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/38689"/>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Begutachtet
Diese Publikation teilen