Detecting optimality and extracting solutions in polynomial optimization with the truncated GNS construction
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Wird erscheinen in
Zusammenfassung
A basic closed semialgebraic subset of Rn is defined by simultaneous polynomial inequalities p1 ≥ 0,...,pm ≥ 0. We consider Lasserre's relaxation hierarchy to solve the problem of minimizing a polynomial over such a set. These relaxations give an increasing sequence of lower bounds of the infimum. In this paper we provide a new certificate for the optimal value of a Lasserre relaxation be the optimal value of the polynomial optimization problem. This certificate is that a modified version of an optimal solution of the Lasserre relaxation is a generalized Hankel matrix. This certificate is more general than the already known certificate of an optimal solution being flat. In case we have optimality we will extract the potencial minimizers with a truncated version of the Gelfand-Naimark-Segal construction on the optimal solution of the Lasserre relaxation. We prove also that the operators of this truncated construction commute if and only if the matrix of this modified optimal solution is a generalized Hankel matrix. This generalization of flatness will bring us to reprove a result of Curto and Fialkow on the existence of quadrature rule if the optimal solution is flat and a result of Xu and Mysovskikh on the existance of a Gaussian quadrature rule if the modified optimal solution is generalized Hankel matrix. At the end, we provide a numerical linear algebraic algorithm for dectecting optimality and extracting solutions of a polynomial optimization problem.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
LOPEZ QUIJORNA, Maria, 2017. Detecting optimality and extracting solutions in polynomial optimization with the truncated GNS constructionBibTex
@unpublished{LopezQuijorna2017-04-06T22:22:55ZDetec-38689, year={2017}, title={Detecting optimality and extracting solutions in polynomial optimization with the truncated GNS construction}, author={Lopez Quijorna, Maria} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/38689"> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-05-02T14:43:10Z</dc:date> <dc:contributor>Lopez Quijorna, Maria</dc:contributor> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dcterms:title>Detecting optimality and extracting solutions in polynomial optimization with the truncated GNS construction</dcterms:title> <dc:creator>Lopez Quijorna, Maria</dc:creator> <dcterms:issued>2017-04-06T22:22:55Z</dcterms:issued> <dcterms:abstract xml:lang="eng">A basic closed semialgebraic subset of R<sup>n</sup> is defined by simultaneous polynomial inequalities p<sub>1</sub> ≥ 0,...,p<sub>m</sub> ≥ 0. We consider Lasserre's relaxation hierarchy to solve the problem of minimizing a polynomial over such a set. These relaxations give an increasing sequence of lower bounds of the infimum. In this paper we provide a new certificate for the optimal value of a Lasserre relaxation be the optimal value of the polynomial optimization problem. This certificate is that a modified version of an optimal solution of the Lasserre relaxation is a generalized Hankel matrix. This certificate is more general than the already known certificate of an optimal solution being flat. In case we have optimality we will extract the potencial minimizers with a truncated version of the Gelfand-Naimark-Segal construction on the optimal solution of the Lasserre relaxation. We prove also that the operators of this truncated construction commute if and only if the matrix of this modified optimal solution is a generalized Hankel matrix. This generalization of flatness will bring us to reprove a result of Curto and Fialkow on the existence of quadrature rule if the optimal solution is flat and a result of Xu and Mysovskikh on the existance of a Gaussian quadrature rule if the modified optimal solution is generalized Hankel matrix. At the end, we provide a numerical linear algebraic algorithm for dectecting optimality and extracting solutions of a polynomial optimization problem.</dcterms:abstract> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:language>eng</dc:language> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/38689/3/Lopez_0-406256.pdf"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:rights>terms-of-use</dc:rights> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-05-02T14:43:10Z</dcterms:available> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/38689/3/Lopez_0-406256.pdf"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/38689"/> </rdf:Description> </rdf:RDF>