KOPS - Das Institutionelle Repositorium der Universität Konstanz

Improving multi-atlas segmentation accuracy by leveraging local neighborhood information during label-fusion

Improving multi-atlas segmentation accuracy by leveraging local neighborhood information during label-fusion

Zitieren

Dateien zu dieser Ressource

Dateien Größe Format Anzeige

Zu diesem Dokument gibt es keine Dateien.

BHAGWAT, Nikhil, Jonathan PIPITONE, Aristotle N. VOINESKOS, Jens PRÜSSNER, M. Mallar CHAKRAVARTY, 2015. Improving multi-atlas segmentation accuracy by leveraging local neighborhood information during label-fusion. 2015 IEEE 12th International Symposium on Biomedical Imaging (ISBI 2015). Brooklyn, NY, USA, 16. Apr 2015 - 19. Apr 2015. In: IEEE 12th International Symposium on Biomedical Imaging (ISBI). 2015 IEEE 12th International Symposium on Biomedical Imaging (ISBI 2015). Brooklyn, NY, USA, 16. Apr 2015 - 19. Apr 2015. Piscataway, NJ:IEEE, pp. 617-620. ISBN 978-1-4799-2374-8

@inproceedings{Bhagwat2015-04Impro-38628, title={Improving multi-atlas segmentation accuracy by leveraging local neighborhood information during label-fusion}, year={2015}, doi={10.1109/ISBI.2015.7163949}, isbn={978-1-4799-2374-8}, address={Piscataway, NJ}, publisher={IEEE}, booktitle={IEEE 12th International Symposium on Biomedical Imaging (ISBI)}, pages={617--620}, author={Bhagwat, Nikhil and Pipitone, Jonathan and Voineskos, Aristotle N. and Prüßner, Jens and Chakravarty, M. Mallar} }

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:dcterms="http://purl.org/dc/terms/" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/38628"> <dc:creator>Bhagwat, Nikhil</dc:creator> <dc:language>eng</dc:language> <dcterms:abstract xml:lang="eng">Multi-atlas segmentation techniques typically comprise generation of multiple candidate labels that are then combined at a final label fusion stage. Label fusion strategies usually leverage information contained in these training labels but ignore local neuroanatomical information. Here, we address this limitation by explicitly incorporating local information at the label fusion stage. The proposed method - Autocorrecting Walks over Localized Markov Random Fields (AWoL-MRF) - is initialized using a set of candidate labels from the atlas library to partition a specific structure into high and low confidence regions. The labels of the low confidence regions are updated based on a localized Markov random field model and a novel sequential inference process (walks), which mimics manual segmentation protocols. The approach combines a priori information from the atlas library with the local spatial constraints improving the accuracy and robustness of the existing segmentation methods.</dcterms:abstract> <dc:contributor>Bhagwat, Nikhil</dc:contributor> <dc:creator>Pipitone, Jonathan</dc:creator> <dcterms:issued>2015-04</dcterms:issued> <dc:contributor>Voineskos, Aristotle N.</dc:contributor> <dc:contributor>Pipitone, Jonathan</dc:contributor> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/38628"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-04-27T07:16:00Z</dcterms:available> <dcterms:title>Improving multi-atlas segmentation accuracy by leveraging local neighborhood information during label-fusion</dcterms:title> <dc:creator>Voineskos, Aristotle N.</dc:creator> <dc:contributor>Chakravarty, M. Mallar</dc:contributor> <dc:creator>Chakravarty, M. Mallar</dc:creator> <dc:creator>Prüßner, Jens</dc:creator> <dc:contributor>Prüßner, Jens</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-04-27T07:16:00Z</dc:date> </rdf:Description> </rdf:RDF>

Das Dokument erscheint in:

KOPS Suche


Stöbern

Mein Benutzerkonto