KOPS - Das Institutionelle Repositorium der Universität Konstanz

Building blocks of biological networks : a review on major network motif discovery algorithms

Building blocks of biological networks : a review on major network motif discovery algorithms

Zitieren

Dateien zu dieser Ressource

Dateien Größe Format Anzeige

Zu diesem Dokument gibt es keine Dateien.

MASOUDI-NEJAD, Ali, Falk SCHREIBER, Zahra Razaghi Moghadam KASHANI, 2012. Building blocks of biological networks : a review on major network motif discovery algorithms. In: IET Systems Biology. 6(5), pp. 164-174. ISSN 1751-8849. eISSN 1751-8857

@article{Masoudi-Nejad2012-10-01Build-38191, title={Building blocks of biological networks : a review on major network motif discovery algorithms}, year={2012}, doi={10.1049/iet-syb.2011.0011}, number={5}, volume={6}, issn={1751-8849}, journal={IET Systems Biology}, pages={164--174}, author={Masoudi-Nejad, Ali and Schreiber, Falk and Kashani, Zahra Razaghi Moghadam} }

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:dcterms="http://purl.org/dc/terms/" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/38191"> <dcterms:title>Building blocks of biological networks : a review on major network motif discovery algorithms</dcterms:title> <dc:contributor>Masoudi-Nejad, Ali</dc:contributor> <dc:creator>Schreiber, Falk</dc:creator> <dc:language>eng</dc:language> <dc:contributor>Schreiber, Falk</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-03-29T08:20:30Z</dc:date> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-03-29T08:20:30Z</dcterms:available> <dcterms:abstract xml:lang="eng">In recent years, there has been a great interest in studying different aspects of complex networks in a range of fields. One important local property of networks is network motifs, recurrent and statistically significant sub-graphs or patterns, which assists researchers in the identification of functional units in the networks. Although network motifs may provide a deep insight into the network's functional abilities, their detection is computationally challenging. Therefore several algorithms have been introduced to resolve this computationally hard problem. These algorithms can be classified under various paradigms such as exact counting methods, sampling methods, pattern growth methods and so on. Here, the authors will give a review on computational aspects of major algorithms and enumerate their related benefits and drawbacks from an algorithmic perspective.</dcterms:abstract> <dc:creator>Kashani, Zahra Razaghi Moghadam</dc:creator> <dcterms:issued>2012-10-01</dcterms:issued> <dc:creator>Masoudi-Nejad, Ali</dc:creator> <dc:contributor>Kashani, Zahra Razaghi Moghadam</dc:contributor> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/38191"/> </rdf:Description> </rdf:RDF>

Das Dokument erscheint in:

KOPS Suche


Stöbern

Mein Benutzerkonto