Fingerprints : detecting meaningful moments for mobile health intervention

Lade...
Vorschaubild
Dateien
Wang_0-399798.pdf
Wang_0-399798.pdfGröße: 300.53 KBDownloads: 336
Datum
2016
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
ArXiv-ID
Internationale Patentnummer
EU-Projektnummer
DFG-Projektnummer
Angaben zur Forschungsförderung (Freitext)
Projekt
SMARTACT Teilprojekt 6: Smartmobility
Open Access-Veröffentlichung
Gesperrt bis
Titel in einer weiteren Sprache
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published
Erschienen in
MobileHCI '16 : Proceedings of the 18th International Conference on Human-Computer Interaction with Mobile Devices and Services Adjunct. New York, NY: ACM, 2016, pp. 1085-1088. ISBN 978-1-4503-4413-5. Available under: doi: 10.1145/2957265.2965006
Zusammenfassung

Personalized and contextual interventions are promising techniques for mobile persuasive technologies in mobile health. In this paper, we propose the "fingerprints" technique to analyze the users' daily behavior patterns to find the meaningful moments to better support mobile persuasive technologies, especially mobile health interventions. We assume that for many persons, their behaviors have patterns and can be detected through the sensor data from smartphones. We develop a three-step interactive machine learning workflow to describe the concept and approach of the "fingerprints" technique. By this we aim to implement a practical and light-weight mobile intervention system without burdening the users with manual logging. In our feasibility study, we show results that provide first insights into the design of the "fingerprints" technique.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
004 Informatik
Schlagwörter
Mobile persuasive technologies; mobile intervention; interactive machine learning
Konferenz
MobileHCI '16 : 18th International Conference on Human-Computer Interaction with Mobile Devices and Services Adjunct, 6. Sep. 2016 - 9. Sep. 2016, Florence, Italy
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690WANG, Yunlong, Le DUAN, Simon BUTSCHER, Jens MÜLLER, Harald REITERER, 2016. Fingerprints : detecting meaningful moments for mobile health intervention. MobileHCI '16 : 18th International Conference on Human-Computer Interaction with Mobile Devices and Services Adjunct. Florence, Italy, 6. Sep. 2016 - 9. Sep. 2016. In: MobileHCI '16 : Proceedings of the 18th International Conference on Human-Computer Interaction with Mobile Devices and Services Adjunct. New York, NY: ACM, 2016, pp. 1085-1088. ISBN 978-1-4503-4413-5. Available under: doi: 10.1145/2957265.2965006
BibTex
@inproceedings{Wang2016Finge-38189,
  year={2016},
  doi={10.1145/2957265.2965006},
  title={Fingerprints : detecting meaningful moments for mobile health intervention},
  isbn={978-1-4503-4413-5},
  publisher={ACM},
  address={New York, NY},
  booktitle={MobileHCI '16 : Proceedings of the 18th International Conference on Human-Computer Interaction with Mobile Devices and Services Adjunct},
  pages={1085--1088},
  author={Wang, Yunlong and Duan, Le and Butscher, Simon and Müller, Jens and Reiterer, Harald}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/38189">
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/38189"/>
    <dc:creator>Wang, Yunlong</dc:creator>
    <dc:contributor>Reiterer, Harald</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-03-28T14:52:22Z</dcterms:available>
    <dc:contributor>Müller, Jens</dc:contributor>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:creator>Reiterer, Harald</dc:creator>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:language>eng</dc:language>
    <dc:contributor>Wang, Yunlong</dc:contributor>
    <dc:contributor>Butscher, Simon</dc:contributor>
    <dcterms:title>Fingerprints : detecting meaningful moments for mobile health intervention</dcterms:title>
    <dc:rights>terms-of-use</dc:rights>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:creator>Müller, Jens</dc:creator>
    <dc:contributor>Duan, Le</dc:contributor>
    <dc:creator>Duan, Le</dc:creator>
    <dcterms:issued>2016</dcterms:issued>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:creator>Butscher, Simon</dc:creator>
    <dcterms:abstract xml:lang="eng">Personalized and contextual interventions are promising techniques for mobile persuasive technologies in mobile health. In this paper, we propose the "fingerprints" technique to analyze the users' daily behavior patterns to find the meaningful moments to better support mobile persuasive technologies, especially mobile health interventions. We assume that for many persons, their behaviors have patterns and can be detected through the sensor data from smartphones. We develop a three-step interactive machine learning workflow to describe the concept and approach of the "fingerprints" technique. By this we aim to implement a practical and light-weight mobile intervention system without burdening the users with manual logging. In our feasibility study, we show results that provide first insights into the design of the "fingerprints" technique.</dcterms:abstract>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/38189/3/Wang_0-399798.pdf"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/38189/3/Wang_0-399798.pdf"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-03-28T14:52:22Z</dc:date>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen