KOPS - The Institutional Repository of the University of Konstanz

How to Make Sense of Team Sport Data : From Acquisition to Data Modeling and Research Aspects

How to Make Sense of Team Sport Data : From Acquisition to Data Modeling and Research Aspects

Cite This

Files in this item

Checksum: MD5:d9775c3d9bc1b2cc6dc198af6117871f

STEIN, Manuel, Halldór JANETZKO, Daniel SEEBACHER, Alexander JÄGER, Manuel NAGEL, Jürgen HÖLSCH, Sven KOSUB, Tobias SCHRECK, Daniel A. KEIM, Michael GROSSNIKLAUS, 2017. How to Make Sense of Team Sport Data : From Acquisition to Data Modeling and Research Aspects. In: Data. 2(1), 2. eISSN 2306-5729. Available under: doi: 10.3390/data2010002

@article{Stein2017-03Sense-38112, title={How to Make Sense of Team Sport Data : From Acquisition to Data Modeling and Research Aspects}, year={2017}, doi={10.3390/data2010002}, number={1}, volume={2}, journal={Data}, author={Stein, Manuel and Janetzko, Halldór and Seebacher, Daniel and Jäger, Alexander and Nagel, Manuel and Hölsch, Jürgen and Kosub, Sven and Schreck, Tobias and Keim, Daniel A. and Grossniklaus, Michael}, note={Article Number: 2} }

<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/38112"> <dcterms:issued>2017-03</dcterms:issued> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <dc:creator>Seebacher, Daniel</dc:creator> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/38112/3/Stein_0-390361.pdf"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Grossniklaus, Michael</dc:creator> <dc:contributor>Jäger, Alexander</dc:contributor> <dc:creator>Keim, Daniel A.</dc:creator> <dc:contributor>Seebacher, Daniel</dc:contributor> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/38112"/> <dc:contributor>Kosub, Sven</dc:contributor> <dc:rights>Attribution 4.0 International</dc:rights> <dc:creator>Nagel, Manuel</dc:creator> <dc:contributor>Keim, Daniel A.</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-03-23T09:17:25Z</dc:date> <dc:creator>Hölsch, Jürgen</dc:creator> <dc:language>eng</dc:language> <dc:contributor>Hölsch, Jürgen</dc:contributor> <dc:creator>Stein, Manuel</dc:creator> <dc:contributor>Grossniklaus, Michael</dc:contributor> <dc:creator>Jäger, Alexander</dc:creator> <dc:contributor>Nagel, Manuel</dc:contributor> <dc:creator>Kosub, Sven</dc:creator> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/> <dc:creator>Janetzko, Halldór</dc:creator> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/38112/3/Stein_0-390361.pdf"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-03-23T09:17:25Z</dcterms:available> <dc:creator>Schreck, Tobias</dc:creator> <dc:contributor>Janetzko, Halldór</dc:contributor> <dc:contributor>Schreck, Tobias</dc:contributor> <dcterms:title>How to Make Sense of Team Sport Data : From Acquisition to Data Modeling and Research Aspects</dcterms:title> <dcterms:abstract xml:lang="eng">Automatic and interactive data analysis is instrumental in making use of increasing amounts of complex data. Owing to novel sensor modalities, analysis of data generated in professional team sport leagues such as soccer, baseball, and basketball has recently become of concern, with potentially high commercial and research interest. The analysis of team ball games can serve many goals, e.g., in coaching to understand effects of strategies and tactics, or to derive insights improving performance. Also, it is often decisive to trainers and analysts to understand why a certain movement of a player or groups of players happened, and what the respective influencing factors are. We consider team sport as group movement including collaboration and competition of individuals following specific rule sets. Analyzing team sports is a challenging problem as it involves joint understanding of heterogeneous data perspectives, including high-dimensional, video, and movement data, as well as considering team behavior and rules (constraints) given in the particular team sport. We identify important components of team sport data, exemplified by the soccer case, and explain how to analyze team sport data in general. We identify challenges arising when facing these data sets and we propose a multi-facet view and analysis including pattern detection, context-aware analysis, and visual explanation. We also present applicable methods and technologies covering the heterogeneous aspects in team sport data.</dcterms:abstract> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/36"/> <dc:contributor>Stein, Manuel</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/36"/> </rdf:Description> </rdf:RDF>

Downloads since Mar 23, 2017 (Information about access statistics)

Stein_0-390361.pdf 951

This item appears in the following Collection(s)

Attribution 4.0 International Except where otherwise noted, this item's license is described as Attribution 4.0 International

Search KOPS


My Account