Toric completions and bounded functions on real algebraic varieties

Cite This

Files in this item

Checksum: MD5:268e1bb033d5cfe8b8d21992633e3e7b

PLAUMANN, Daniel, Claus SCHEIDERER, 2016. Toric completions and bounded functions on real algebraic varieties. In: Journal of the London Mathematical Society. 94(2), pp. 598-616. ISSN 0024-6107. eISSN 1469-7750. Available under: doi: 10.1112/jlms/jdw050

@article{Plaumann2016Toric-37777, title={Toric completions and bounded functions on real algebraic varieties}, year={2016}, doi={10.1112/jlms/jdw050}, number={2}, volume={94}, issn={0024-6107}, journal={Journal of the London Mathematical Society}, pages={598--616}, author={Plaumann, Daniel and Scheiderer, Claus} }

<rdf:RDF xmlns:dcterms="" xmlns:dc="" xmlns:rdf="" xmlns:bibo="" xmlns:dspace="" xmlns:foaf="" xmlns:void="" xmlns:xsd="" > <rdf:Description rdf:about=""> <dcterms:isPartOf rdf:resource=""/> <dspace:isPartOfCollection rdf:resource=""/> <dc:contributor>Plaumann, Daniel</dc:contributor> <dcterms:available rdf:datatype="">2017-02-28T15:19:00Z</dcterms:available> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:abstract xml:lang="eng">Given a semi-algebraic set S, we study compactifications of S that arise from embeddings into complete toric varieties. This makes it possible to describe the asymptotic growth of polynomial functions on S in terms of combinatorial data. We extend our earlier work in Plaumann and Scheiderer [‘The ring of bounded polynomials on a semi-algebraic set’, Trans. Amer. Math. Soc. 364 (2012) 4663–4682] to compute the ring of bounded functions in this setting, and discuss applications to positive polynomials and the moment problem. Complete results are obtained in special cases, like sets defined by binomial inequalities. We also show that the wild behaviour of certain examples constructed by Krug [‘Geometric interpretations of a counterexample to Hilbert's 14th problem, and rings of bounded polynomials on semialgebraic sets’, Preprint, 2011, arXiv:1105.2029] and Mondal-Netzer [‘How fast do polynomials grow on semialgebraic sets?’, J. Algebra 413 (2014) 320–344] cannot occur in a toric setting.</dcterms:abstract> <bibo:uri rdf:resource=""/> <dspace:hasBitstream rdf:resource=""/> <dcterms:isPartOf rdf:resource=""/> <dcterms:issued>2016</dcterms:issued> <dcterms:title>Toric completions and bounded functions on real algebraic varieties</dcterms:title> <dc:rights>terms-of-use</dc:rights> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <dspace:isPartOfCollection rdf:resource=""/> <dc:creator>Plaumann, Daniel</dc:creator> <dcterms:rights rdf:resource=""/> <dcterms:hasPart rdf:resource=""/> <dc:date rdf:datatype="">2017-02-28T15:19:00Z</dc:date> <dc:creator>Scheiderer, Claus</dc:creator> <dc:contributor>Scheiderer, Claus</dc:contributor> <dc:language>eng</dc:language> </rdf:Description> </rdf:RDF>

Downloads since Feb 28, 2017 (Information about access statistics)

Plaumann_0-374717.pdf 129

This item appears in the following Collection(s)

Search KOPS


My Account