KOPS - Das Institutionelle Repositorium der Universität Konstanz

Genomics of a phototrophic nitrite oxidizer : insights into the evolution of photosynthesis and nitrification

Genomics of a phototrophic nitrite oxidizer : insights into the evolution of photosynthesis and nitrification

Zitieren

Dateien zu dieser Ressource

Dateien Größe Format Anzeige

Zu diesem Dokument gibt es keine Dateien.

HEMP, James, Sebastian LÜCKER, Joachim SCHOTT, Laura A. PACE, Jena E. JOHNSON, Bernhard SCHINK, Holger DAIMS, Woodward W. FISCHER, 2016. Genomics of a phototrophic nitrite oxidizer : insights into the evolution of photosynthesis and nitrification. In: The ISME Journal. 10(11), pp. 2669-2678. eISSN 2200-4270. Available under: doi: 10.1038/ismej.2016.56

@article{Hemp2016-11Genom-37712, title={Genomics of a phototrophic nitrite oxidizer : insights into the evolution of photosynthesis and nitrification}, year={2016}, doi={10.1038/ismej.2016.56}, number={11}, volume={10}, journal={The ISME Journal}, pages={2669--2678}, author={Hemp, James and Lücker, Sebastian and Schott, Joachim and Pace, Laura A. and Johnson, Jena E. and Schink, Bernhard and Daims, Holger and Fischer, Woodward W.} }

<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/37712"> <dc:language>eng</dc:language> <dc:creator>Hemp, James</dc:creator> <dc:creator>Pace, Laura A.</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-02-24T14:25:32Z</dcterms:available> <dc:creator>Fischer, Woodward W.</dc:creator> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:contributor>Schott, Joachim</dc:contributor> <dc:contributor>Pace, Laura A.</dc:contributor> <dc:contributor>Lücker, Sebastian</dc:contributor> <dcterms:issued>2016-11</dcterms:issued> <dc:creator>Schink, Bernhard</dc:creator> <dcterms:title>Genomics of a phototrophic nitrite oxidizer : insights into the evolution of photosynthesis and nitrification</dcterms:title> <dc:creator>Daims, Holger</dc:creator> <dc:contributor>Daims, Holger</dc:contributor> <dc:contributor>Schink, Bernhard</dc:contributor> <dc:contributor>Fischer, Woodward W.</dc:contributor> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/37712"/> <dc:creator>Johnson, Jena E.</dc:creator> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/28"/> <dc:contributor>Johnson, Jena E.</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/28"/> <dcterms:abstract xml:lang="eng">Oxygenic photosynthesis evolved from anoxygenic ancestors before the rise of oxygen ~2.32 billion years ago; however, little is known about this transition. A high redox potential reaction center is a prerequisite for the evolution of the water-oxidizing complex of photosystem II. Therefore, it is likely that high-potential phototrophy originally evolved to oxidize alternative electron donors that utilized simpler redox chemistry, such as nitrite or Mn. To determine whether nitrite could have had a role in the transition to high-potential phototrophy, we sequenced and analyzed the genome of Thiocapsa KS1, a Gammaproteobacteria capable of anoxygenic phototrophic nitrite oxidation. The genome revealed a high metabolic flexibility, which likely allows Thiocapsa KS1 to colonize a great variety of habitats and to persist under fluctuating environmental conditions. We demonstrate that Thiocapsa KS1 does not utilize a high-potential reaction center for phototrophic nitrite oxidation, which suggests that this type of phototrophic nitrite oxidation did not drive the evolution of high-potential phototrophy. In addition, phylogenetic and biochemical analyses of the nitrite oxidoreductase (NXR) from Thiocapsa KS1 illuminate a complex evolutionary history of nitrite oxidation. Our results indicate that the NXR in Thiocapsa originates from a different nitrate reductase clade than the NXRs in chemolithotrophic nitrite oxidizers, suggesting that multiple evolutionary trajectories led to modern nitrite-oxidizing bacteria.</dcterms:abstract> <dc:creator>Schott, Joachim</dc:creator> <dc:creator>Lücker, Sebastian</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-02-24T14:25:32Z</dc:date> <dc:contributor>Hemp, James</dc:contributor> </rdf:Description> </rdf:RDF>

Das Dokument erscheint in:

KOPS Suche


Stöbern

Mein Benutzerkonto