KOPS - Das Institutionelle Repositorium der Universität Konstanz

Forecasting with Bayesian Vector Autoregressions Estimated Using Professional Forecasts

Forecasting with Bayesian Vector Autoregressions Estimated Using Professional Forecasts

Zitieren

Dateien zu dieser Ressource

Dateien Größe Format Anzeige

Zu diesem Dokument gibt es keine Dateien.

FREY, Christoph, Frieder MOKINSKI, 2016. Forecasting with Bayesian Vector Autoregressions Estimated Using Professional Forecasts. In: Journal of Applied Econometrics. 31(6), pp. 1083-1099. ISSN 0883-7252. eISSN 1099-1255

@article{Frey2016Forec-37504, title={Forecasting with Bayesian Vector Autoregressions Estimated Using Professional Forecasts}, year={2016}, doi={10.1002/jae.2483}, number={6}, volume={31}, issn={0883-7252}, journal={Journal of Applied Econometrics}, pages={1083--1099}, author={Frey, Christoph and Mokinski, Frieder} }

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:dcterms="http://purl.org/dc/terms/" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/37504"> <dc:contributor>Mokinski, Frieder</dc:contributor> <dc:contributor>Frey, Christoph</dc:contributor> <dc:language>eng</dc:language> <dcterms:issued>2016</dcterms:issued> <dc:creator>Mokinski, Frieder</dc:creator> <dc:creator>Frey, Christoph</dc:creator> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/37504"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-02-16T10:22:27Z</dcterms:available> <dcterms:title>Forecasting with Bayesian Vector Autoregressions Estimated Using Professional Forecasts</dcterms:title> <dcterms:abstract xml:lang="eng">We propose a Bayesian shrinkage approach for vector autoregressions (VARs) that uses short-term survey forecasts as an additional source of information about model parameters. In particular, we augment the vector of dependent variables by their survey nowcasts, and claim that each variable modelled in the VAR and its nowcast are likely to depend in a similar way on the lagged dependent variables. In an application to macroeconomic data, we find that the forecasts obtained from a VAR fitted by our new shrinkage approach typically yield smaller mean squared forecast errors than the forecasts obtained from a range of benchmark methods.</dcterms:abstract> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-02-16T10:22:27Z</dc:date> </rdf:Description> </rdf:RDF>

Das Dokument erscheint in:

KOPS Suche


Stöbern

Mein Benutzerkonto