Generative Data Models for Validation and Evaluation of Visualization Techniques

Thumbnail Image
Date
2016
Editors
Contact
Journal ISSN
Electronic ISSN
ISBN
Bibliographical data
Publisher
Series
URI (citable link)
DOI (citable link)
ArXiv-ID
International patent number
Link to the license
EU project number
Project
Open Access publication
Restricted until
Title in another language
Research Projects
Organizational Units
Journal Issue
Publication type
Contribution to a conference collection
Publication status
Published
Published in
BELIV '16 : Proceedings of the Sixth Workshop on Beyond Time and Errors on Novel Evaluation Methods for Visualization. - New York : ACM Press, 2016. - pp. 112-124. - ISBN 978-1-4503-4818-8
Abstract
We argue that there is a need for substantially more research on the use of generative data models in the validation and evaluation of visualization techniques. For example, user studies will require the display of representative and uncon-founded visual stimuli, while algorithms will need functional coverage and assessable benchmarks. However, data is often collected in a semi-automatic fashion or entirely hand-picked, which obscures the view of generality, impairs availability, and potentially violates privacy. There are some sub-domains of visualization that use synthetic data in the sense of generative data models, whereas others work with real-world-based data sets and simulations. Depending on the visualization domain, many generative data models are "side projects" as part of an ad-hoc validation of a techniques paper and thus neither reusable nor general-purpose. We review existing work on popular data collections and generative data models in visualization to discuss the opportunities and consequences for technique validation, evaluation, and experiment design. We distill handling and future directions, and discuss how we can engineer generative data models and how visualization research could benefit from more and better use of generative data models.
Summary in another language
Subject (DDC)
004 Computer Science
Keywords
Conference
BELIV Workshop 2016, Oct 24, 2016 - Oct 24, 2016, Baltimore, MD, USA
Review
undefined / . - undefined, undefined. - (undefined; undefined)
Cite This
ISO 690SCHULZ, Christoph, Arlind NOCAJ, Mennatallah EL-ASSADY, Michael BLUMENSCHEIN, Christin SCHÄTZLE, Miriam BUTT, Daniel A. KEIM, Ulrik BRANDES, Daniel WEISKOPF, 2016. Generative Data Models for Validation and Evaluation of Visualization Techniques. BELIV Workshop 2016. Baltimore, MD, USA, Oct 24, 2016 - Oct 24, 2016. In: BELIV '16 : Proceedings of the Sixth Workshop on Beyond Time and Errors on Novel Evaluation Methods for Visualization. New York:ACM Press, pp. 112-124. ISBN 978-1-4503-4818-8. Available under: doi: 10.1145/2993901.2993907
BibTex
@inproceedings{Schulz2016Gener-37469,
  year={2016},
  doi={10.1145/2993901.2993907},
  title={Generative Data Models for Validation and Evaluation of Visualization Techniques},
  isbn={978-1-4503-4818-8},
  publisher={ACM Press},
  address={New York},
  booktitle={BELIV '16 : Proceedings of the Sixth Workshop on Beyond Time and Errors on Novel Evaluation Methods for Visualization},
  pages={112--124},
  author={Schulz, Christoph and Nocaj, Arlind and El-Assady, Mennatallah and Blumenschein, Michael and Schätzle, Christin and Butt, Miriam and Keim, Daniel A. and Brandes, Ulrik and Weiskopf, Daniel}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/37469">
    <dc:creator>Weiskopf, Daniel</dc:creator>
    <dc:contributor>Schulz, Christoph</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-02-16T07:54:41Z</dcterms:available>
    <dc:creator>Brandes, Ulrik</dc:creator>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/37469"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/45"/>
    <dcterms:title>Generative Data Models for Validation and Evaluation of Visualization Techniques</dcterms:title>
    <dcterms:abstract xml:lang="eng">We argue that there is a need for substantially more research on the use of generative data models in the validation and evaluation of visualization techniques. For example, user studies will require the display of representative and uncon-founded visual stimuli, while algorithms will need functional coverage and assessable benchmarks. However, data is often collected in a semi-automatic fashion or entirely hand-picked, which obscures the view of generality, impairs availability, and potentially violates privacy. There are some sub-domains of visualization that use synthetic data in the sense of generative data models, whereas others work with real-world-based data sets and simulations. Depending on the visualization domain, many generative data models are "side projects" as part of an ad-hoc validation of a techniques paper and thus neither reusable nor general-purpose. We review existing work on popular data collections and generative data models in visualization to discuss the opportunities and consequences for technique validation, evaluation, and experiment design. We distill handling and future directions, and discuss how we can engineer generative data models and how visualization research could benefit from more and better use of generative data models.</dcterms:abstract>
    <dc:contributor>Schätzle, Christin</dc:contributor>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/37469/1/Schulz_0-370172.pdf"/>
    <dc:creator>Butt, Miriam</dc:creator>
    <dc:contributor>Weiskopf, Daniel</dc:contributor>
    <dc:contributor>Brandes, Ulrik</dc:contributor>
    <dc:contributor>El-Assady, Mennatallah</dc:contributor>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-02-16T07:54:41Z</dc:date>
    <dc:creator>Nocaj, Arlind</dc:creator>
    <dc:contributor>Butt, Miriam</dc:contributor>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:creator>Schulz, Christoph</dc:creator>
    <dc:creator>Schätzle, Christin</dc:creator>
    <dc:contributor>Keim, Daniel A.</dc:contributor>
    <dcterms:issued>2016</dcterms:issued>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/37469/1/Schulz_0-370172.pdf"/>
    <dc:creator>El-Assady, Mennatallah</dc:creator>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:creator>Blumenschein, Michael</dc:creator>
    <dc:creator>Keim, Daniel A.</dc:creator>
    <dc:contributor>Nocaj, Arlind</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:language>eng</dc:language>
    <dc:contributor>Blumenschein, Michael</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/45"/>
  </rdf:Description>
</rdf:RDF>
Internal note
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Contact
URL of original publication
Test date of URL
Examination date of dissertation
Method of financing
Comment on publication
Alliance license
Corresponding Authors der Uni Konstanz vorhanden
International Co-Authors
Bibliography of Konstanz
Yes
Refereed