Generative Data Models for Validation and Evaluation of Visualization Techniques

Lade...
Vorschaubild
Dateien
Schulz_0-370172.pdf
Schulz_0-370172.pdfGröße: 184.43 KBDownloads: 935
Datum
2016
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published
Erschienen in
BELIV '16 : Proceedings of the Sixth Workshop on Beyond Time and Errors on Novel Evaluation Methods for Visualization. New York: ACM Press, 2016, pp. 112-124. ISBN 978-1-4503-4818-8. Available under: doi: 10.1145/2993901.2993907
Zusammenfassung

We argue that there is a need for substantially more research on the use of generative data models in the validation and evaluation of visualization techniques. For example, user studies will require the display of representative and uncon-founded visual stimuli, while algorithms will need functional coverage and assessable benchmarks. However, data is often collected in a semi-automatic fashion or entirely hand-picked, which obscures the view of generality, impairs availability, and potentially violates privacy. There are some sub-domains of visualization that use synthetic data in the sense of generative data models, whereas others work with real-world-based data sets and simulations. Depending on the visualization domain, many generative data models are "side projects" as part of an ad-hoc validation of a techniques paper and thus neither reusable nor general-purpose. We review existing work on popular data collections and generative data models in visualization to discuss the opportunities and consequences for technique validation, evaluation, and experiment design. We distill handling and future directions, and discuss how we can engineer generative data models and how visualization research could benefit from more and better use of generative data models.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
004 Informatik
Schlagwörter
Konferenz
BELIV Workshop 2016, 24. Okt. 2016 - 24. Okt. 2016, Baltimore, MD, USA
Rezension
undefined / . - undefined, undefined
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Datensätze
Zitieren
ISO 690SCHULZ, Christoph, Arlind NOCAJ, Mennatallah EL-ASSADY, Michael BLUMENSCHEIN, Christin SCHÄTZLE, Miriam BUTT, Daniel A. KEIM, Ulrik BRANDES, Daniel WEISKOPF, 2016. Generative Data Models for Validation and Evaluation of Visualization Techniques. BELIV Workshop 2016. Baltimore, MD, USA, 24. Okt. 2016 - 24. Okt. 2016. In: BELIV '16 : Proceedings of the Sixth Workshop on Beyond Time and Errors on Novel Evaluation Methods for Visualization. New York: ACM Press, 2016, pp. 112-124. ISBN 978-1-4503-4818-8. Available under: doi: 10.1145/2993901.2993907
BibTex
@inproceedings{Schulz2016Gener-37469,
  year={2016},
  doi={10.1145/2993901.2993907},
  title={Generative Data Models for Validation and Evaluation of Visualization Techniques},
  isbn={978-1-4503-4818-8},
  publisher={ACM Press},
  address={New York},
  booktitle={BELIV '16 : Proceedings of the Sixth Workshop on Beyond Time and Errors on Novel Evaluation Methods for Visualization},
  pages={112--124},
  author={Schulz, Christoph and Nocaj, Arlind and El-Assady, Mennatallah and Blumenschein, Michael and Schätzle, Christin and Butt, Miriam and Keim, Daniel A. and Brandes, Ulrik and Weiskopf, Daniel}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/37469">
    <dc:creator>Weiskopf, Daniel</dc:creator>
    <dc:contributor>Schulz, Christoph</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-02-16T07:54:41Z</dcterms:available>
    <dc:creator>Brandes, Ulrik</dc:creator>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/37469"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/45"/>
    <dcterms:title>Generative Data Models for Validation and Evaluation of Visualization Techniques</dcterms:title>
    <dcterms:abstract xml:lang="eng">We argue that there is a need for substantially more research on the use of generative data models in the validation and evaluation of visualization techniques. For example, user studies will require the display of representative and uncon-founded visual stimuli, while algorithms will need functional coverage and assessable benchmarks. However, data is often collected in a semi-automatic fashion or entirely hand-picked, which obscures the view of generality, impairs availability, and potentially violates privacy. There are some sub-domains of visualization that use synthetic data in the sense of generative data models, whereas others work with real-world-based data sets and simulations. Depending on the visualization domain, many generative data models are "side projects" as part of an ad-hoc validation of a techniques paper and thus neither reusable nor general-purpose. We review existing work on popular data collections and generative data models in visualization to discuss the opportunities and consequences for technique validation, evaluation, and experiment design. We distill handling and future directions, and discuss how we can engineer generative data models and how visualization research could benefit from more and better use of generative data models.</dcterms:abstract>
    <dc:contributor>Schätzle, Christin</dc:contributor>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/37469/1/Schulz_0-370172.pdf"/>
    <dc:creator>Butt, Miriam</dc:creator>
    <dc:contributor>Weiskopf, Daniel</dc:contributor>
    <dc:contributor>Brandes, Ulrik</dc:contributor>
    <dc:contributor>El-Assady, Mennatallah</dc:contributor>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-02-16T07:54:41Z</dc:date>
    <dc:creator>Nocaj, Arlind</dc:creator>
    <dc:contributor>Butt, Miriam</dc:contributor>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:creator>Schulz, Christoph</dc:creator>
    <dc:creator>Schätzle, Christin</dc:creator>
    <dc:contributor>Keim, Daniel A.</dc:contributor>
    <dcterms:issued>2016</dcterms:issued>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/37469/1/Schulz_0-370172.pdf"/>
    <dc:creator>El-Assady, Mennatallah</dc:creator>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:creator>Blumenschein, Michael</dc:creator>
    <dc:creator>Keim, Daniel A.</dc:creator>
    <dc:contributor>Nocaj, Arlind</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:language>eng</dc:language>
    <dc:contributor>Blumenschein, Michael</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/45"/>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen