fastFM : a library for factorization machines

Cite This

Files in this item

Files Size Format View

There are no files associated with this item.

BAYER, Immanuel, 2016. fastFM : a library for factorization machines. In: Journal of Machine Learning Research (JMLR). 17(1), pp. 6393-6397. ISSN 1532-4435. eISSN 1533-7928

@article{Bayer2016fastF-37432, title={fastFM : a library for factorization machines}, year={2016}, number={1}, volume={17}, issn={1532-4435}, journal={Journal of Machine Learning Research (JMLR)}, pages={6393--6397}, author={Bayer, Immanuel} }

<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/37432"> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-02-15T09:57:36Z</dcterms:available> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/36"/> <dc:contributor>Bayer, Immanuel</dc:contributor> <dc:creator>Bayer, Immanuel</dc:creator> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/37432"/> <dc:language>eng</dc:language> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-02-15T09:57:36Z</dc:date> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <dcterms:abstract xml:lang="eng">Factorization Machines (FM) are currently only used in a narrow range of applications and are not yet part of the standard machine learning toolbox, despite their great success in collaborative filtering and click-through rate prediction. However, Factorization Machines are a general model to deal with sparse and high dimensional features. Our Factorization Machine implementation (fastFM) provides easy access to many solvers and supports regression, classification and ranking tasks. Such an implementation simplifies the use of FM for a wide range of applications. Therefore, our implementation has the potential to improve understanding of the FM model and drive new development.</dcterms:abstract> <dcterms:issued>2016</dcterms:issued> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/36"/> <dcterms:title>fastFM : a library for factorization machines</dcterms:title> </rdf:Description> </rdf:RDF>

This item appears in the following Collection(s)

Search KOPS


Browse

My Account