Widened Learning of Bayesian Network Classifiers

Thumbnail Image
Date
2016
Editors
Contact
Journal ISSN
Electronic ISSN
ISBN
Bibliographical data
Publisher
Series
URI (citable link)
ArXiv-ID
International patent number
Link to the license
EU project number
Project
Open Access publication
Restricted until
Title in another language
Research Projects
Organizational Units
Journal Issue
Publication type
Contribution to a conference collection
Publication status
Published
Published in
Advances in Intelligent Data Analysis XV : 15th International Symposium, IDA 2016, Stockholm, Sweden, October 13-15, 2016; Proceedings / Boström, Henrik et al. (ed.). - Cham : Springer, 2016. - (Lecture Notes in Computer Science ; 9897). - pp. 215-225. - ISSN 0302-9743. - eISSN 1611-3349. - ISBN 978-3-319-46348-3
Abstract
We demonstrate the application of Widening to learning performant Bayesian Networks for use as classifiers. Widening is a framework for utilizing parallel resources and diversity to find models in a hypothesis space that are potentially better than those of a standard greedy algorithm. This work demonstrates that widened learning of Bayesian Networks, using the Frobenius Norm of the networks’ graph Laplacian matrices as a distance measure, can create Bayesian networks that are better classifiers than those generated by popular Bayesian Network algorithms.
Summary in another language
Subject (DDC)
004 Computer Science
Keywords
Conference
15th International Symposium, IDA 2016, Oct 13, 2016 - Oct 15, 2016, Stockholm
Review
undefined / . - undefined, undefined. - (undefined; undefined)
Cite This
ISO 690SAMPSON, Oliver R., Michael R. BERTHOLD, 2016. Widened Learning of Bayesian Network Classifiers. 15th International Symposium, IDA 2016. Stockholm, Oct 13, 2016 - Oct 15, 2016. In: BOSTRÖM, Henrik, ed. and others. Advances in Intelligent Data Analysis XV : 15th International Symposium, IDA 2016, Stockholm, Sweden, October 13-15, 2016; Proceedings. Cham:Springer, pp. 215-225. ISSN 0302-9743. eISSN 1611-3349. ISBN 978-3-319-46348-3. Available under: doi: 10.1007/978-3-319-46349-0_19
BibTex
@inproceedings{Sampson2016-09-21Widen-37277,
  year={2016},
  doi={10.1007/978-3-319-46349-0_19},
  title={Widened Learning of Bayesian Network Classifiers},
  number={9897},
  isbn={978-3-319-46348-3},
  issn={0302-9743},
  publisher={Springer},
  address={Cham},
  series={Lecture Notes in Computer Science},
  booktitle={Advances in Intelligent Data Analysis XV : 15th International Symposium, IDA 2016, Stockholm, Sweden, October 13-15, 2016; Proceedings},
  pages={215--225},
  editor={Boström, Henrik},
  author={Sampson, Oliver R. and Berthold, Michael R.}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/37277">
    <dc:language>eng</dc:language>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-02-09T13:18:50Z</dcterms:available>
    <dc:contributor>Sampson, Oliver R.</dc:contributor>
    <dc:creator>Sampson, Oliver R.</dc:creator>
    <dc:contributor>Berthold, Michael R.</dc:contributor>
    <dc:creator>Berthold, Michael R.</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-02-09T13:18:50Z</dc:date>
    <dcterms:issued>2016-09-21</dcterms:issued>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/37277/1/Sampson_0-370131.pdf"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/37277"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:abstract xml:lang="eng">We demonstrate the application of Widening to learning performant Bayesian Networks for use as classifiers. Widening is a framework for utilizing parallel resources and diversity to find models in a hypothesis space that are potentially better than those of a standard greedy algorithm. This work demonstrates that widened learning of Bayesian Networks, using the Frobenius Norm of the networks’ graph Laplacian matrices as a distance measure, can create Bayesian networks that are better classifiers than those generated by popular Bayesian Network algorithms.</dcterms:abstract>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/37277/1/Sampson_0-370131.pdf"/>
    <dcterms:title>Widened Learning of Bayesian Network Classifiers</dcterms:title>
  </rdf:Description>
</rdf:RDF>
Internal note
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Contact
URL of original publication
Test date of URL
Examination date of dissertation
Method of financing
Comment on publication
Alliance license
Corresponding Authors der Uni Konstanz vorhanden
International Co-Authors
Bibliography of Konstanz
Yes
Refereed