Probabilistic Graph Layout for Uncertain Network Visualization

Cite This

Files in this item

Checksum: MD5:a29f74f42e2e87cfb30f245cff6d281a

SCHULZ, Christoph, Arlind NOCAJ, Jochen GOERTLER, Oliver DEUSSEN, Ulrik BRANDES, Daniel WEISKOPF, 2017. Probabilistic Graph Layout for Uncertain Network Visualization. In: IEEE Transactions on Visualization and Computer Graphics. 23(1), pp. 531-540. ISSN 1941-0506. eISSN 1077-2626. Available under: doi: 10.1109/TVCG.2016.2598919

@article{Schulz2017-01Proba-36890, title={Probabilistic Graph Layout for Uncertain Network Visualization}, year={2017}, doi={10.1109/TVCG.2016.2598919}, number={1}, volume={23}, issn={1941-0506}, journal={IEEE Transactions on Visualization and Computer Graphics}, pages={531--540}, author={Schulz, Christoph and Nocaj, Arlind and Goertler, Jochen and Deussen, Oliver and Brandes, Ulrik and Weiskopf, Daniel} }

<rdf:RDF xmlns:dcterms="" xmlns:dc="" xmlns:rdf="" xmlns:bibo="" xmlns:dspace="" xmlns:foaf="" xmlns:void="" xmlns:xsd="" > <rdf:Description rdf:about=""> <dcterms:isPartOf rdf:resource=""/> <dc:creator>Schulz, Christoph</dc:creator> <dcterms:rights rdf:resource=""/> <dc:creator>Nocaj, Arlind</dc:creator> <dc:rights>terms-of-use</dc:rights> <dc:contributor>Nocaj, Arlind</dc:contributor> <dc:creator>Brandes, Ulrik</dc:creator> <dc:creator>Weiskopf, Daniel</dc:creator> <dcterms:abstract xml:lang="eng">We present a novel uncertain network visualization technique based on node-link diagrams. Nodes expand spatially in our probabilistic graph layout, depending on the underlying probability distributions of edges. The visualization is created by computing a two-dimensional graph embedding that combines samples from the probabilistic graph. A Monte Carlo process is used to decompose a probabilistic graph into its possible instances and to continue with our graph layout technique. Splatting and edge bundling are used to visualize point clouds and network topology. The results provide insights into probability distributions for the entire network-not only for individual nodes and edges. We validate our approach using three data sets that represent a wide range of network types: synthetic data, protein-protein interactions from the STRING database, and travel times extracted from Google Maps. Our approach reveals general limitations of the force-directed layout and allows the user to recognize that some nodes of the graph are at a specific position just by chance.</dcterms:abstract> <bibo:uri rdf:resource=""/> <dc:contributor>Brandes, Ulrik</dc:contributor> <dcterms:hasPart rdf:resource=""/> <dc:creator>Deussen, Oliver</dc:creator> <dc:language>eng</dc:language> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:issued>2017-01</dcterms:issued> <dc:creator>Goertler, Jochen</dc:creator> <dc:contributor>Deussen, Oliver</dc:contributor> <dspace:hasBitstream rdf:resource=""/> <dc:contributor>Schulz, Christoph</dc:contributor> <dc:contributor>Goertler, Jochen</dc:contributor> <dc:date rdf:datatype="">2017-01-23T14:28:07Z</dc:date> <dcterms:available rdf:datatype="">2017-01-23T14:28:07Z</dcterms:available> <dspace:isPartOfCollection rdf:resource=""/> <dc:contributor>Weiskopf, Daniel</dc:contributor> <dcterms:title>Probabilistic Graph Layout for Uncertain Network Visualization</dcterms:title> </rdf:Description> </rdf:RDF>

Downloads since Jan 23, 2017 (Information about access statistics)

Schulz_0-386044.pdf 2581

This item appears in the following Collection(s)

Search KOPS


My Account