KOPS - Das Institutionelle Repositorium der Universität Konstanz

Optimizing phosphorus diffusion for photovoltaic applications : Peak doping, inactive phosphorus, gettering, and contact formation

Optimizing phosphorus diffusion for photovoltaic applications : Peak doping, inactive phosphorus, gettering, and contact formation

Zitieren

Dateien zu dieser Ressource

Dateien Größe Format Anzeige

Zu diesem Dokument gibt es keine Dateien.

WAGNER, Hannes, Amir DASTGHEIB-SHIRAZI, Byungsul MIN, Ashley E. MORISHIGE, Michael STEYER, Giso HAHN, Carlos DEL CAÑIZO, Tonio BUONASSISI, Pietro P. ALTERMATT, 2016. Optimizing phosphorus diffusion for photovoltaic applications : Peak doping, inactive phosphorus, gettering, and contact formation. In: Journal of Applied Physics. 119(18), 185704. ISSN 0021-8979. eISSN 1089-7550. Available under: doi: 10.1063/1.4949326

@article{Wagner2016-05-14Optim-35426, title={Optimizing phosphorus diffusion for photovoltaic applications : Peak doping, inactive phosphorus, gettering, and contact formation}, year={2016}, doi={10.1063/1.4949326}, number={18}, volume={119}, issn={0021-8979}, journal={Journal of Applied Physics}, author={Wagner, Hannes and Dastgheib-Shirazi, Amir and Min, Byungsul and Morishige, Ashley E. and Steyer, Michael and Hahn, Giso and del Cañizo, Carlos and Buonassisi, Tonio and Altermatt, Pietro P.}, note={Article Number: 185704} }

Buonassisi, Tonio Steyer, Michael 2016-05-14 Min, Byungsul Hahn, Giso 2016-09-28T08:34:16Z Wagner, Hannes Steyer, Michael Buonassisi, Tonio Dastgheib-Shirazi, Amir 2016-09-28T08:34:16Z The phosphosilicate glass (PSG), fabricated by tube furnace diffusion using a POCl<sub>3</sub> source, is widely used as a dopant source in the manufacturing of crystalline silicon solar cells. Although it has been a widely addressed research topic for a long time, there is still lack of a comprehensive understanding of aspects such as the growth, the chemical composition, possible phosphorus depletion, the resulting in-diffused phosphorus profiles, the gettering behavior in silicon, and finally the metal-contact formation. This paper addresses these different aspects simultaneously to further optimize process conditions for photovoltaic applications. To do so, a wide range of experimental data is used and combined with device and process simulations, leading to a more comprehensive interpretation. The results show that slight changes in the PSG process conditions can produce high-quality emitters. It is predicted that PSG processes at 860 °C for 60 min in combination with an etch-back and laser doping from PSG layer results in high-quality emitters with a peak dopant density N<sub>peak</sub> = 8.0 × 10<sup>18</sup> cm<sup>−3</sup> and a junction depth d<sub>j</sub> = 0.4 μm, resulting in a sheet resistivityρsh = 380 Ω/sq and a saturation current-density J<sub>0</sub> below 10 fA/cm<sup>2</sup>. With these properties, the POCl<sub>3</sub> process can compete with ion implantation or doped oxide approaches. Altermatt, Pietro P. Wagner, Hannes Optimizing phosphorus diffusion for photovoltaic applications : Peak doping, inactive phosphorus, gettering, and contact formation Min, Byungsul Hahn, Giso Dastgheib-Shirazi, Amir del Cañizo, Carlos Altermatt, Pietro P. eng Morishige, Ashley E. del Cañizo, Carlos Morishige, Ashley E.

Das Dokument erscheint in:

KOPS Suche


Stöbern

Mein Benutzerkonto