How are Mathematical Objects Constituted? A Structuralist Answer

Zitieren

Dateien zu dieser Ressource

Prüfsumme: MD5:bd1c90658c94e7d8ad1919955c6672ad

SPOHN, Wolfgang, 2006. How are Mathematical Objects Constituted? A Structuralist Answer. GAP. 6. Berlin, 11. Sep 2006 - 14. Sep 2006. In: GAP. 6 Philosophie - Grundlagen und Anwendungen, Berlin, 11.-14.9.2006. GAP. 6. Berlin, 11. Sep 2006 - 14. Sep 2006, pp. 106-119

@inproceedings{Spohn2006Mathe-3504, title={How are Mathematical Objects Constituted? A Structuralist Answer}, year={2006}, booktitle={GAP. 6 Philosophie - Grundlagen und Anwendungen, Berlin, 11.-14.9.2006}, pages={106--119}, author={Spohn, Wolfgang} }

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:dcterms="http://purl.org/dc/terms/" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/3504"> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-23T13:46:34Z</dc:date> <dcterms:abstract xml:lang="eng">The paper proposes to amend structuralism in mathematics by saying what places in a structure and thus mathematical objects are. They are the objects of the canonical system realizing a categorical structure, where that canonical system is a minimal system in a specific essentialistic sense. It would thus be a basic ontological axiom that such a canonical system always exists. This way of conceiving mathematical objects is underscored by a defense of an essentialistic version of Leibniz principle according to which each object is uniquely characterized by its proper and possibly relational essence (where proper means not referring to identity")</dcterms:abstract> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-23T13:46:34Z</dcterms:available> <dc:contributor>Spohn, Wolfgang</dc:contributor> <dc:creator>Spohn, Wolfgang</dc:creator> <dcterms:bibliographicCitation>Paper contribution to the sections of: GAP. 6 Philosophie - Grundlagen und Anwendungen, Berlin, 11.-14.9.2006, pp. 106-119</dcterms:bibliographicCitation> <dc:rights>deposit-license</dc:rights> <dc:format>application/pdf</dc:format> <dcterms:issued>2006</dcterms:issued> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/3504"/> <dcterms:title>How are Mathematical Objects Constituted? A Structuralist Answer</dcterms:title> <dc:language>eng</dc:language> <dcterms:rights rdf:resource="http://nbn-resolving.org/urn:nbn:de:bsz:352-20140905103416863-3868037-7"/> </rdf:Description> </rdf:RDF>

Dateiabrufe seit 01.10.2014 (Informationen über die Zugriffsstatistik)

Spohn_2006_How_are_Mathematical.pdf 72

Das Dokument erscheint in:

KOPS Suche


Stöbern

Mein Benutzerkonto