Type of Publication: | Journal article |
Publication status: | Published |
Author: | Scheiderer, Claus |
Year of publication: | 2016 |
Published in: | Journal of the European Mathematical Society : JEMS ; 18 (2016), 7. - pp. 1495-1513. - ISSN 1435-9855. - eISSN 1435-9863 |
DOI (citable link): | https://dx.doi.org/10.4171/JEMS/620 |
Summary: |
We construct families of explicit (homogeneous) polynomials f over Q that are sums of squares of polynomials over R, but not over Q. Whether or not such examples exist was an open question originally raised by Sturmfels. In the case of ternary quartics we prove that our construction yields all possible examples. We also study representations of the f we construct as sums of squares of rational functions over Q, proving lower bounds for the possible degrees of denominators. For deg(f)=4, or for ternary sextics, we obtain explicit such representations with the minimum degree of the denominators.
|
Subject (DDC): | 510 Mathematics |
Bibliography of Konstanz: | Yes |
Files | Size | Format | View |
---|---|---|---|
There are no files associated with this item. |
SCHEIDERER, Claus, 2016. Sums of squares of polynomials with rational coefficients. In: Journal of the European Mathematical Society : JEMS. 18(7), pp. 1495-1513. ISSN 1435-9855. eISSN 1435-9863. Available under: doi: 10.4171/JEMS/620
@article{Scheiderer2016squar-34851, title={Sums of squares of polynomials with rational coefficients}, year={2016}, doi={10.4171/JEMS/620}, number={7}, volume={18}, issn={1435-9855}, journal={Journal of the European Mathematical Society : JEMS}, pages={1495--1513}, author={Scheiderer, Claus} }
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/34851"> <dcterms:abstract xml:lang="eng">We construct families of explicit (homogeneous) polynomials f over Q that are sums of squares of polynomials over R, but not over Q. Whether or not such examples exist was an open question originally raised by Sturmfels. In the case of ternary quartics we prove that our construction yields all possible examples. We also study representations of the f we construct as sums of squares of rational functions over Q, proving lower bounds for the possible degrees of denominators. For deg(f)=4, or for ternary sextics, we obtain explicit such representations with the minimum degree of the denominators.</dcterms:abstract> <dc:contributor>Scheiderer, Claus</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/39"/> <dcterms:title>Sums of squares of polynomials with rational coefficients</dcterms:title> <dc:creator>Scheiderer, Claus</dc:creator> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/39"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2016-07-21T12:54:29Z</dcterms:available> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/34851"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2016-07-21T12:54:29Z</dc:date> <dcterms:issued>2016</dcterms:issued> <dc:language>eng</dc:language> </rdf:Description> </rdf:RDF>