KOPS - Das Institutionelle Repositorium der Universität Konstanz

Quasi-analyticity and determinacy of the full moment problem from finite to infinite dimensions

Quasi-analyticity and determinacy of the full moment problem from finite to infinite dimensions

Zitieren

Dateien zu dieser Ressource

Dateien Größe Format Anzeige

Zu diesem Dokument gibt es keine Dateien.

INFUSINO, Maria, 2016. Quasi-analyticity and determinacy of the full moment problem from finite to infinite dimensions. Stochastic and Infinite Dimensional Analysis. Bielefeld, 24. Jun 2013 - 28. Jun 2013. In: BERNIDO, Christopher, ed. and others. Stochastic and Infinite Dimensional Analysis. Stochastic and Infinite Dimensional Analysis. Bielefeld, 24. Jun 2013 - 28. Jun 2013. Basel:Birkhäuser, pp. 161-194. ISSN 2297-0215. ISBN 978-3-319-07244-9

@inproceedings{Infusino2016Quasi-34833, title={Quasi-analyticity and determinacy of the full moment problem from finite to infinite dimensions}, year={2016}, doi={10.1007/978-3-319-07245-6_9}, isbn={978-3-319-07244-9}, issn={2297-0215}, address={Basel}, publisher={Birkhäuser}, series={Trends in Mathematics}, booktitle={Stochastic and Infinite Dimensional Analysis}, pages={161--194}, editor={Bernido, Christopher}, author={Infusino, Maria} }

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:dcterms="http://purl.org/dc/terms/" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/34833"> <dcterms:issued>2016</dcterms:issued> <dcterms:title>Quasi-analyticity and determinacy of the full moment problem from finite to infinite dimensions</dcterms:title> <dc:language>eng</dc:language> <dcterms:abstract xml:lang="eng">This paper is aimed to show the essential role played by the theory of quasi-analytic functions in the study of the determinacy of the moment problem on finite and infinite-dimensional spaces. In particular, the quasi-analytic criterion of self-adjointness of operators and their commutativity are crucial to establish whether or not a measure is uniquely determined by its moments. Our main goal is to point out that this is a common feature of the determinacy question in both the finite and the infinite-dimensional moment problem, by reviewing some of the most known determinacy results from this perspective. We also collect some properties of independent interest concerning the characterization of quasi-analytic classes associated to log-convex sequences.</dcterms:abstract> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/34833"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2016-07-19T08:13:09Z</dcterms:available> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2016-07-19T08:13:09Z</dc:date> <dc:creator>Infusino, Maria</dc:creator> <dc:contributor>Infusino, Maria</dc:contributor> </rdf:Description> </rdf:RDF>

Das Dokument erscheint in:

KOPS Suche


Stöbern

Mein Benutzerkonto