KOPS - The Institutional Repository of the University of Konstanz

On Clustering Time Series Using Euclidean Distance and Pearson Correlation

On Clustering Time Series Using Euclidean Distance and Pearson Correlation

Cite This

Files in this item

Checksum: MD5:215acb32cf86557f91ef53bf255edc36

BERTHOLD, Michael R., Frank HÖPPNER, 2016. On Clustering Time Series Using Euclidean Distance and Pearson Correlation

@unpublished{Berthold2016Clust-34784, title={On Clustering Time Series Using Euclidean Distance and Pearson Correlation}, year={2016}, author={Berthold, Michael R. and Höppner, Frank} }

<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/34784"> <dc:contributor>Höppner, Frank</dc:contributor> <dc:rights>terms-of-use</dc:rights> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/34784"/> <dcterms:abstract xml:lang="eng">For time series comparisons, it has often been observed that z-score normalized Euclidean distances far outperform the unnormalized variant. In this paper we show that a z-score normalized, squared Euclidean Distance is, in fact, equal to a distance based on Pearson Correlation. This has profound impact on many distance-based classification or clustering methods. In addition to this theoretically sound result we also show that the often used k-Means algorithm formally needs a mod ification to keep the interpretation as Pearson correlation strictly valid. Experimental results demonstrate that in many cases the standard k-Means algorithm generally produces the same results.</dcterms:abstract> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2016-07-13T13:07:14Z</dcterms:available> <dc:creator>Höppner, Frank</dc:creator> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/36"/> <dc:contributor>Berthold, Michael R.</dc:contributor> <dcterms:issued>2016</dcterms:issued> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/34784/1/Berthold_0-347884.pdf"/> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <dc:creator>Berthold, Michael R.</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2016-07-13T13:07:14Z</dc:date> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/36"/> <dcterms:title>On Clustering Time Series Using Euclidean Distance and Pearson Correlation</dcterms:title> <dc:language>eng</dc:language> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/34784/1/Berthold_0-347884.pdf"/> </rdf:Description> </rdf:RDF>

Downloads since Jul 13, 2016 (Information about access statistics)

Berthold_0-347884.pdf 266

This item appears in the following Collection(s)

Search KOPS


Browse

My Account