An evaluation of the run-time and task-based performance of event detection techniques for Twitter
Dateien
Datum
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Twitter׳s increasing popularity as a source of up-to-date news and information about current events has spawned a body of research on event detection techniques for social media data streams. Although all proposed approaches provide some evidence as to the quality of the detected events, none relate this task-based performance to their run-time performance in terms of processing speed, data throughput, or memory usage. In particular, neither a quantitative nor a comparative evaluation of these aspects has been performed to date. In this article, we study the run-time and task-based performance of several state-of-the-art event detection techniques for Twitter. In order to reproducibly compare run-time performance, our approach is based on a general-purpose data stream management system, whereas task-based performance is automatically assessed based on a series of novel measures.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
WEILER, Andreas, Michael GROSSNIKLAUS, Marc H. SCHOLL, 2016. An evaluation of the run-time and task-based performance of event detection techniques for Twitter. In: Information Systems. 2016, 62, pp. 207-219. ISSN 0306-4379. eISSN 1873-6076. Available under: doi: 10.1016/j.is.2016.01.003BibTex
@article{Weiler2016-12evalu-33581, year={2016}, doi={10.1016/j.is.2016.01.003}, title={An evaluation of the run-time and task-based performance of event detection techniques for Twitter}, volume={62}, issn={0306-4379}, journal={Information Systems}, pages={207--219}, author={Weiler, Andreas and Grossniklaus, Michael and Scholl, Marc H.} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/33581"> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2016-04-13T14:39:08Z</dcterms:available> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/33581/1/Weiler_0-326718.pdf"/> <dc:language>eng</dc:language> <dc:contributor>Scholl, Marc H.</dc:contributor> <dcterms:title>An evaluation of the run-time and task-based performance of event detection techniques for Twitter</dcterms:title> <dcterms:abstract xml:lang="eng">Twitter׳s increasing popularity as a source of up-to-date news and information about current events has spawned a body of research on event detection techniques for social media data streams. Although all proposed approaches provide some evidence as to the quality of the detected events, none relate this task-based performance to their run-time performance in terms of processing speed, data throughput, or memory usage. In particular, neither a quantitative nor a comparative evaluation of these aspects has been performed to date. In this article, we study the run-time and task-based performance of several state-of-the-art event detection techniques for Twitter. In order to reproducibly compare run-time performance, our approach is based on a general-purpose data stream management system, whereas task-based performance is automatically assessed based on a series of novel measures.</dcterms:abstract> <dc:creator>Weiler, Andreas</dc:creator> <dc:rights>terms-of-use</dc:rights> <dcterms:issued>2016-12</dcterms:issued> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2016-04-13T14:39:08Z</dc:date> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:contributor>Weiler, Andreas</dc:contributor> <dc:creator>Scholl, Marc H.</dc:creator> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/33581/1/Weiler_0-326718.pdf"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/33581"/> <dc:contributor>Grossniklaus, Michael</dc:contributor> <dc:creator>Grossniklaus, Michael</dc:creator> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> </rdf:Description> </rdf:RDF>