An evaluation of the run-time and task-based performance of event detection techniques for Twitter

Lade...
Vorschaubild
Dateien
Weiler_0-326718.pdf
Weiler_0-326718.pdfGröße: 622.24 KBDownloads: 466
Datum
2016
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Information Systems. 2016, 62, pp. 207-219. ISSN 0306-4379. eISSN 1873-6076. Available under: doi: 10.1016/j.is.2016.01.003
Zusammenfassung

Twitter׳s increasing popularity as a source of up-to-date news and information about current events has spawned a body of research on event detection techniques for social media data streams. Although all proposed approaches provide some evidence as to the quality of the detected events, none relate this task-based performance to their run-time performance in terms of processing speed, data throughput, or memory usage. In particular, neither a quantitative nor a comparative evaluation of these aspects has been performed to date. In this article, we study the run-time and task-based performance of several state-of-the-art event detection techniques for Twitter. In order to reproducibly compare run-time performance, our approach is based on a general-purpose data stream management system, whereas task-based performance is automatically assessed based on a series of novel measures.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
004 Informatik
Schlagwörter
Event detection; Performance evaluation; Twitter social media data stream
Konferenz
Rezension
undefined / . - undefined, undefined
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Datensätze
Zitieren
ISO 690WEILER, Andreas, Michael GROSSNIKLAUS, Marc H. SCHOLL, 2016. An evaluation of the run-time and task-based performance of event detection techniques for Twitter. In: Information Systems. 2016, 62, pp. 207-219. ISSN 0306-4379. eISSN 1873-6076. Available under: doi: 10.1016/j.is.2016.01.003
BibTex
@article{Weiler2016-12evalu-33581,
  year={2016},
  doi={10.1016/j.is.2016.01.003},
  title={An evaluation of the run-time and task-based performance of event detection techniques for Twitter},
  volume={62},
  issn={0306-4379},
  journal={Information Systems},
  pages={207--219},
  author={Weiler, Andreas and Grossniklaus, Michael and Scholl, Marc H.}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/33581">
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2016-04-13T14:39:08Z</dcterms:available>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/33581/1/Weiler_0-326718.pdf"/>
    <dc:language>eng</dc:language>
    <dc:contributor>Scholl, Marc H.</dc:contributor>
    <dcterms:title>An evaluation of the run-time and task-based performance of event detection techniques for Twitter</dcterms:title>
    <dcterms:abstract xml:lang="eng">Twitter׳s increasing popularity as a source of up-to-date news and information about current events has spawned a body of research on event detection techniques for social media data streams. Although all proposed approaches provide some evidence as to the quality of the detected events, none relate this task-based performance to their run-time performance in terms of processing speed, data throughput, or memory usage. In particular, neither a quantitative nor a comparative evaluation of these aspects has been performed to date. In this article, we study the run-time and task-based performance of several state-of-the-art event detection techniques for Twitter. In order to reproducibly compare run-time performance, our approach is based on a general-purpose data stream management system, whereas task-based performance is automatically assessed based on a series of novel measures.</dcterms:abstract>
    <dc:creator>Weiler, Andreas</dc:creator>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:issued>2016-12</dcterms:issued>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2016-04-13T14:39:08Z</dc:date>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:contributor>Weiler, Andreas</dc:contributor>
    <dc:creator>Scholl, Marc H.</dc:creator>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/33581/1/Weiler_0-326718.pdf"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/33581"/>
    <dc:contributor>Grossniklaus, Michael</dc:contributor>
    <dc:creator>Grossniklaus, Michael</dc:creator>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen