Natural selection against a circadian clock gene mutation in mice

Cite This

Files in this item

Checksum: MD5:defea26ed3ff60d62668e1db331b1cf8

SPOELSTRA, Kamiel, Martin WIKELSKI, Serge DAAN, Andrew S. I. LOUDON, Michaela HAU, 2016. Natural selection against a circadian clock gene mutation in mice. In: Proceedings of the National Academy of Sciences of the United States of America : PNAS. 113(3), pp. 686-691. ISSN 0027-8424. eISSN 1091-6490. Available under: doi: 10.1073/pnas.1516442113

@article{Spoelstra2016Natur-33526, title={Natural selection against a circadian clock gene mutation in mice}, year={2016}, doi={10.1073/pnas.1516442113}, number={3}, volume={113}, issn={0027-8424}, journal={Proceedings of the National Academy of Sciences of the United States of America : PNAS}, pages={686--691}, author={Spoelstra, Kamiel and Wikelski, Martin and Daan, Serge and Loudon, Andrew S. I. and Hau, Michaela} }

<rdf:RDF xmlns:dcterms="" xmlns:dc="" xmlns:rdf="" xmlns:bibo="" xmlns:dspace="" xmlns:foaf="" xmlns:void="" xmlns:xsd="" > <rdf:Description rdf:about=""> <dc:contributor>Spoelstra, Kamiel</dc:contributor> <dcterms:available rdf:datatype="">2016-04-01T07:57:48Z</dcterms:available> <dc:contributor>Loudon, Andrew S. I.</dc:contributor> <dc:contributor>Daan, Serge</dc:contributor> <dcterms:abstract xml:lang="eng">Circadian rhythms with an endogenous period close to or equal to the natural light-dark cycle are considered evolutionarily adaptive ("circadian resonance hypothesis"). Despite remarkable insight into the molecular mechanisms driving circadian cycles, this hypothesis has not been tested under natural conditions for any eukaryotic organism. We tested this hypothesis in mice bearing a short-period mutation in the enzyme casein kinase 1ε (tau mutation), which accelerates free-running circadian cycles. We compared daily activity (feeding) rhythms, survivorship, and reproduction in six replicate populations in outdoor experimental enclosures, established with wild-type, heterozygous, and homozygous mice in a Mendelian ratio. In the release cohort, survival was reduced in the homozygote mutant mice, revealing strong selection against short-period genotypes. Over the course of 14 mo, the relative frequency of the tau allele dropped from initial parity to 20%. Adult survival and recruitment of juveniles into the population contributed approximately equally to the selection for wild-type alleles. The expression of activity during daytime varied throughout the experiment and was significantly increased by the tau mutation. The strong selection against the short-period tau allele observed here contrasts with earlier studies showing absence of selection against a Period 2 (Per2) mutation, which disrupts internal clock function, but does not change period length. These findings are consistent with, and predicted by the theory that resonance of the circadian system plays an important role in individual fitness.</dcterms:abstract> <dc:creator>Daan, Serge</dc:creator> <dcterms:hasPart rdf:resource=""/> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <dc:creator>Loudon, Andrew S. I.</dc:creator> <dcterms:rights rdf:resource=""/> <dspace:isPartOfCollection rdf:resource=""/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Spoelstra, Kamiel</dc:creator> <dc:contributor>Hau, Michaela</dc:contributor> <dc:creator>Hau, Michaela</dc:creator> <bibo:uri rdf:resource=""/> <dcterms:title>Natural selection against a circadian clock gene mutation in mice</dcterms:title> <dcterms:issued>2016</dcterms:issued> <dc:creator>Wikelski, Martin</dc:creator> <dc:date rdf:datatype="">2016-04-01T07:57:48Z</dc:date> <dspace:hasBitstream rdf:resource=""/> <dc:language>eng</dc:language> <dcterms:isPartOf rdf:resource=""/> <dc:contributor>Wikelski, Martin</dc:contributor> <dc:rights>terms-of-use</dc:rights> </rdf:Description> </rdf:RDF>

Downloads since Apr 1, 2016 (Information about access statistics)

Spoelstra_0-321801.pdf 148

This item appears in the following Collection(s)

Search KOPS


My Account