Applying visual analytics to explore and analyze movement data

Zitieren

Dateien zu dieser Ressource

Dateien Größe Format Anzeige

Zu diesem Dokument gibt es keine Dateien.

CAKMAK, Eren, Alexander GÄRTNER, Thomas HEPP, Juri BUCHMÜLLER, Fabian FISCHER, Daniel A. KEIM, 2015. Applying visual analytics to explore and analyze movement data. IEEE Conference on Visual Analytics Science and Technology (VAST). Chicago, IL, USA, 25. Okt 2015 - 30. Okt 2015. In: CHEN, Min, ed. and others. 2015 IEEE Conference on Visual Analytics Science and Technology : Proceedings : Chicago, Illinois, USA, 25-30 October 2015. IEEE Conference on Visual Analytics Science and Technology (VAST). Chicago, IL, USA, 25. Okt 2015 - 30. Okt 2015. Piscataway, NJ:IEEE, pp. 127-128. ISBN 978-1-4673-9783-4

@inproceedings{Cakmak2015-10Apply-33497, title={Applying visual analytics to explore and analyze movement data}, year={2015}, doi={10.1109/VAST.2015.7347643}, isbn={978-1-4673-9783-4}, address={Piscataway, NJ}, publisher={IEEE}, booktitle={2015 IEEE Conference on Visual Analytics Science and Technology : Proceedings : Chicago, Illinois, USA, 25-30 October 2015}, pages={127--128}, editor={Chen, Min}, author={Cakmak, Eren and Gärtner, Alexander and Hepp, Thomas and Buchmüller, Juri and Fischer, Fabian and Keim, Daniel A.} }

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:dcterms="http://purl.org/dc/terms/" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/33497"> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/33497"/> <dc:contributor>Gärtner, Alexander</dc:contributor> <dc:creator>Buchmüller, Juri</dc:creator> <dcterms:issued>2015-10</dcterms:issued> <dc:contributor>Keim, Daniel A.</dc:contributor> <dcterms:title>Applying visual analytics to explore and analyze movement data</dcterms:title> <dcterms:abstract xml:lang="eng">The VAST Challenge 2015 movement dataset is mirroring current challenges in the analysis of large spatiotemporal datasets. We present a tool featuring different exploratory approaches analyze and visualize spatiotemporal data to build and confirm hypotheses. Our tool helps the user to find patterns, anomalies and groups in a data set that can not be processed manually. We present custom visualizations to solve the tasks stated by the VAST 2015 Mini-Challenge (MC1).</dcterms:abstract> <dc:creator>Gärtner, Alexander</dc:creator> <dc:contributor>Cakmak, Eren</dc:contributor> <dc:creator>Hepp, Thomas</dc:creator> <dc:creator>Keim, Daniel A.</dc:creator> <dc:contributor>Buchmüller, Juri</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2016-03-30T12:09:57Z</dc:date> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2016-03-30T12:09:57Z</dcterms:available> <dc:contributor>Hepp, Thomas</dc:contributor> <dc:contributor>Fischer, Fabian</dc:contributor> <dc:creator>Cakmak, Eren</dc:creator> <dc:language>eng</dc:language> <dc:creator>Fischer, Fabian</dc:creator> </rdf:Description> </rdf:RDF>

Das Dokument erscheint in:

KOPS Suche


Stöbern

Mein Benutzerkonto