An averaging principle for fast diffusions in domains separated by semi-permeable membranes
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
We prove an averaging principle which asserts convergence of diffusions on domains separated by semi-permeable membranes, when the speed of diffusion tends to infinity while the flux through the membranes remains constant. In the limit, points in each domain are lumped into a single state of a limit Markov chain. The limit chain's intensities are proportional to membranes' permeability and inversely proportional to the domains' sizes. Analytically, the limit is an example of a singular perturbation in which boundary and transmission conditions play a crucial role. This averaging principle is strongly motivated by recent signaling pathways models of mathematical biology, which are discussed in the final section of the paper.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
BOBROWSKI, Adam, Bogdan KAZMIERCZAK, Markus KUNZE, 2017. An averaging principle for fast diffusions in domains separated by semi-permeable membranes. In: Mathematical Models and Methods in Applied Sciences. 2017, 27(4), pp. 663-706. ISSN 0218-2025. eISSN 1793-6314. Available under: doi: 10.1142/S0218202517500130BibTex
@article{Bobrowski2017avera-33472, year={2017}, doi={10.1142/S0218202517500130}, title={An averaging principle for fast diffusions in domains separated by semi-permeable membranes}, number={4}, volume={27}, issn={0218-2025}, journal={Mathematical Models and Methods in Applied Sciences}, pages={663--706}, author={Bobrowski, Adam and Kazmierczak, Bogdan and Kunze, Markus} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/33472"> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-05-15T13:09:57Z</dcterms:available> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:contributor>Kazmierczak, Bogdan</dc:contributor> <dc:creator>Bobrowski, Adam</dc:creator> <dcterms:issued>2017</dcterms:issued> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/33472"/> <dc:language>eng</dc:language> <dc:contributor>Bobrowski, Adam</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:creator>Kunze, Markus</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-05-15T13:09:57Z</dc:date> <dc:creator>Kazmierczak, Bogdan</dc:creator> <dc:contributor>Kunze, Markus</dc:contributor> <dcterms:abstract xml:lang="eng">We prove an averaging principle which asserts convergence of diffusions on domains separated by semi-permeable membranes, when the speed of diffusion tends to infinity while the flux through the membranes remains constant. In the limit, points in each domain are lumped into a single state of a limit Markov chain. The limit chain's intensities are proportional to membranes' permeability and inversely proportional to the domains' sizes. Analytically, the limit is an example of a singular perturbation in which boundary and transmission conditions play a crucial role. This averaging principle is strongly motivated by recent signaling pathways models of mathematical biology, which are discussed in the final section of the paper.</dcterms:abstract> <dcterms:title>An averaging principle for fast diffusions in domains separated by semi-permeable membranes</dcterms:title> </rdf:Description> </rdf:RDF>