KOPS - The Institutional Repository of the University of Konstanz

HARAM : a Hierarchical ARAM Neural Network for Large-Scale Text Classification

HARAM : a Hierarchical ARAM Neural Network for Large-Scale Text Classification

Cite This

Files in this item

Files Size Format View

There are no files associated with this item.

BENITES, Fernando, Elena SAPOZHNIKOVA, 2015. HARAM : a Hierarchical ARAM Neural Network for Large-Scale Text Classification. 15th IEEE International Conference on Data Mining Workshop (ICDMW 2015). Atlantic City, NJ, USA, Nov 14, 2015 - Nov 17, 2015. In: CUI, Peng, ed. and others. 15th IEEE International Conference on Data Mining Workshop : Proceedings ; 14–17 November 2015, Atlantic City, New Jersey. Los Alamitos, CA:IEEE, pp. 847-854. ISBN 978-1-4673-8493-3. Available under: doi: 10.1109/ICDMW.2015.14

@inproceedings{Benites2015-11HARAM-33471, title={HARAM : a Hierarchical ARAM Neural Network for Large-Scale Text Classification}, year={2015}, doi={10.1109/ICDMW.2015.14}, isbn={978-1-4673-8493-3}, address={Los Alamitos, CA}, publisher={IEEE}, booktitle={15th IEEE International Conference on Data Mining Workshop : Proceedings ; 14–17 November 2015, Atlantic City, New Jersey}, pages={847--854}, editor={Cui, Peng}, author={Benites, Fernando and Sapozhnikova, Elena} }

<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/33471"> <dc:creator>Benites, Fernando</dc:creator> <dc:creator>Sapozhnikova, Elena</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2016-03-24T13:34:46Z</dc:date> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/33471"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2016-03-24T13:34:46Z</dcterms:available> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/36"/> <dc:contributor>Benites, Fernando</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/36"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:language>eng</dc:language> <dcterms:issued>2015-11</dcterms:issued> <dcterms:abstract xml:lang="eng">With the rapid development of the Web, the need for text classification of large data volumes is permanently growing. Texts represented as bags-of-words possess usually very high dimensionality in the input space and often also in the output space if labeled with many categories. As a result, neural classifiers should be adapted to such large-scale data. We present here a well scalable extension to the fuzzy Adaptive Resonance Associative Map (ARAM) neural network which was specially developed for high-dimensional and large data. This extension aims at increasing the classification speed by adding an extra ART layer for clustering learned prototypes into large clusters. In this case the activation of all prototypes can be replaced by the activation of a small fraction of them, leading to a significant reduction of the classification time. This extension can be especially useful for multi-label classification tasks.</dcterms:abstract> <dcterms:title>HARAM : a Hierarchical ARAM Neural Network for Large-Scale Text Classification</dcterms:title> <dc:contributor>Sapozhnikova, Elena</dc:contributor> </rdf:Description> </rdf:RDF>

This item appears in the following Collection(s)

Search KOPS


Browse

My Account