Inference in VARs with conditional heteroskedasticity of unknown form

Lade...
Vorschaubild
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2016
Autor:innen
Jentsch, Carsten
Trenkler, Carsten
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Prognose und strukturelle Analyse mit kontemporär aggregierten Zeitreihendaten
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Journal of Econometrics. 2016, 191(1), pp. 69-85. ISSN 0304-4076. eISSN 1872-6895. Available under: doi: 10.1016/j.jeconom.2015.10.004
Zusammenfassung

We consider a framework for asymptotically valid inference in stable vector autoregressive (VAR) models with conditional heteroskedasticity of unknown form. A joint central limit theorem for the LS estimators of both the VAR slope parameters as well as the unconditional innovation variance parameters is obtained from a weak vector autoregressive moving average model set-up recently proposed in the literature. Our results are important for correct inference on VAR statistics that depend both on the VAR slope and the variance parameters as e.g. in structural impulse responses. We also show that wild and pairwise bootstrap schemes fail in the presence of conditional heteroskedasticity if inference on (functions) of the unconditional variance parameters is of interest because they do not correctly replicate the relevant fourth moments’ structure of the innovations. In contrast, the residual-based moving block bootstrap results in asymptotically valid inference. We illustrate the practical implications of our theoretical results by providing simulation evidence on the finite sample properties of different inference methods for impulse response coefficients. Our results point out that estimation uncertainty may increase dramatically in the presence of conditional heteroskedasticity. Moreover, most inference methods are likely to understate the true estimation uncertainty substantially in finite samples.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
330 Wirtschaft
Schlagwörter
VAR; Conditional heteroskedasticity; Mixing; Residual-based moving block bootstrap; Pairwise bootstrap; Wild bootstrap
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690BRÜGGEMANN, Ralf, Carsten JENTSCH, Carsten TRENKLER, 2016. Inference in VARs with conditional heteroskedasticity of unknown form. In: Journal of Econometrics. 2016, 191(1), pp. 69-85. ISSN 0304-4076. eISSN 1872-6895. Available under: doi: 10.1016/j.jeconom.2015.10.004
BibTex
@article{Bruggemann2016Infer-32982,
  year={2016},
  doi={10.1016/j.jeconom.2015.10.004},
  title={Inference in VARs with conditional heteroskedasticity of unknown form},
  number={1},
  volume={191},
  issn={0304-4076},
  journal={Journal of Econometrics},
  pages={69--85},
  author={Brüggemann, Ralf and Jentsch, Carsten and Trenkler, Carsten}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/32982">
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/46"/>
    <dcterms:title>Inference in VARs with conditional heteroskedasticity of unknown form</dcterms:title>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/46"/>
    <dc:contributor>Jentsch, Carsten</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2016-02-16T08:57:37Z</dcterms:available>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:contributor>Brüggemann, Ralf</dc:contributor>
    <dc:creator>Jentsch, Carsten</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2016-02-16T08:57:37Z</dc:date>
    <dc:creator>Trenkler, Carsten</dc:creator>
    <dcterms:issued>2016</dcterms:issued>
    <dc:creator>Brüggemann, Ralf</dc:creator>
    <dcterms:abstract xml:lang="eng">We consider a framework for asymptotically valid inference in stable vector autoregressive (VAR) models with conditional heteroskedasticity of unknown form. A joint central limit theorem for the LS estimators of both the VAR slope parameters as well as the unconditional innovation variance parameters is obtained from a weak vector autoregressive moving average model set-up recently proposed in the literature. Our results are important for correct inference on VAR statistics that depend both on the VAR slope and the variance parameters as e.g. in structural impulse responses. We also show that wild and pairwise bootstrap schemes fail in the presence of conditional heteroskedasticity if inference on (functions) of the unconditional variance parameters is of interest because they do not correctly replicate the relevant fourth moments’ structure of the innovations. In contrast, the residual-based moving block bootstrap results in asymptotically valid inference. We illustrate the practical implications of our theoretical results by providing simulation evidence on the finite sample properties of different inference methods for impulse response coefficients. Our results point out that estimation uncertainty may increase dramatically in the presence of conditional heteroskedasticity. Moreover, most inference methods are likely to understate the true estimation uncertainty substantially in finite samples.</dcterms:abstract>
    <dc:contributor>Trenkler, Carsten</dc:contributor>
    <dc:language>eng</dc:language>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/32982"/>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen