Type of Publication: | Contribution to a collection |
Publication status: | Published |
Author: | Urban, Karsten; Volkwein, Stefan; Zeeb, Oliver |
Year of publication: | 2014 |
Published in: | Reduced order methods for modeling and computational reduction / Quarteroni, Alfio et al. (ed.). - Cham [u.a.] : Springer, 2014. - (Modeling, Simulation & Applications ; 9). - pp. 137-157. - ISBN 978-3-319-02089-1 |
DOI (citable link): | https://dx.doi.org/10.1007/978-3-319-02090-7_5 |
Summary: |
We consider the reduced basis generation in the offline stage. As an alternative for standard Greedy-training methods based upon a-posteriori error estimates on a training subset of the parameter set, we consider a nonlinear optimization combined with a Greedy method. We define an optimization problem for selecting a new parameter value on a given reduced space. This new parameter is then used -in a Greedy fashion- to determine the corresponding snapshot and to update the reduced basis. We show the well-posedness of this nonlinear optimization problem and derive first- and second-order optimality conditions. Numerical comparisons with the standard Greedy-training method are shown.
|
Subject (DDC): | 510 Mathematics |
Bibliography of Konstanz: | Yes |
Files | Size | Format | View |
---|---|---|---|
There are no files associated with this item. |
URBAN, Karsten, Stefan VOLKWEIN, Oliver ZEEB, 2014. Greedy Sampling Using Nonlinear Optimization. In: QUARTERONI, Alfio, ed. and others. Reduced order methods for modeling and computational reduction. Cham [u.a.]:Springer, pp. 137-157. ISBN 978-3-319-02089-1. Available under: doi: 10.1007/978-3-319-02090-7_5
@incollection{Urban2014Greed-32973, title={Greedy Sampling Using Nonlinear Optimization}, year={2014}, doi={10.1007/978-3-319-02090-7_5}, number={9}, isbn={978-3-319-02089-1}, address={Cham [u.a.]}, publisher={Springer}, series={Modeling, Simulation & Applications}, booktitle={Reduced order methods for modeling and computational reduction}, pages={137--157}, editor={Quarteroni, Alfio}, author={Urban, Karsten and Volkwein, Stefan and Zeeb, Oliver} }
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/32973"> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/39"/> <dc:language>eng</dc:language> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2016-02-15T14:06:11Z</dc:date> <dcterms:issued>2014</dcterms:issued> <dc:contributor>Zeeb, Oliver</dc:contributor> <dcterms:title>Greedy Sampling Using Nonlinear Optimization</dcterms:title> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/32973"/> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <dc:creator>Urban, Karsten</dc:creator> <dc:creator>Zeeb, Oliver</dc:creator> <dc:contributor>Volkwein, Stefan</dc:contributor> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/39"/> <dc:contributor>Urban, Karsten</dc:contributor> <dcterms:abstract xml:lang="eng">We consider the reduced basis generation in the offline stage. As an alternative for standard Greedy-training methods based upon a-posteriori error estimates on a training subset of the parameter set, we consider a nonlinear optimization combined with a Greedy method. We define an optimization problem for selecting a new parameter value on a given reduced space. This new parameter is then used -in a Greedy fashion- to determine the corresponding snapshot and to update the reduced basis. We show the well-posedness of this nonlinear optimization problem and derive first- and second-order optimality conditions. Numerical comparisons with the standard Greedy-training method are shown.</dcterms:abstract> <dc:creator>Volkwein, Stefan</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2016-02-15T14:06:11Z</dcterms:available> </rdf:Description> </rdf:RDF>