Type of Publication: | Journal article |
Publication status: | Published |
URI (citable link): | http://nbn-resolving.de/urn:nbn:de:bsz:352-0-302906 |
Author: | Großmaß, Lidan; Poon, Ser-Huang |
Year of publication: | 2015 |
Published in: | Studies in Nonlinear Dynamics & Econometrics ; 19 (2015), 4. - pp. 501-529. - ISSN 1081-1826. - eISSN 1558-3708 |
DOI (citable link): | https://dx.doi.org/10.1515/snde-2013-0123 |
Summary: |
We estimate the dynamic daily dependence between assets by applying the Semiparametric Copula-Based Multivariate Dynamic (SCOMDY) model on intraday data. Using tick data of three stock returns of the period before and during the credit crisis, we find that our dependence estimator better captures the steep increase in dependence during the onset of the crisis as compared to other commonly used time-varying copula methods. Like other high-frequency estimators, we find that the dependence estimator exhibits long memory and forecast it using a HAR model. We show that for out-of-sample forecasts, our dependence estimator performs better than the constant estimator and other commonly used time-varying copula dependence estimators.
|
Subject (DDC): | 330 Economics |
Keywords: | copula, high frequency data, intraday dependence, time-varying dependence, value-at-risk |
Link to License: | In Copyright |
xmlui.ArtifactBrowser.ItemViewer.detail.textAllianzLicense | |
GROSSMASS, Lidan, Ser-Huang POON, 2015. Estimating dynamic copula dependence using intraday data. In: Studies in Nonlinear Dynamics & Econometrics. 19(4), pp. 501-529. ISSN 1081-1826. eISSN 1558-3708. Available under: doi: 10.1515/snde-2013-0123
@article{Groma2015Estim-32914, title={Estimating dynamic copula dependence using intraday data}, year={2015}, doi={10.1515/snde-2013-0123}, number={4}, volume={19}, issn={1081-1826}, journal={Studies in Nonlinear Dynamics & Econometrics}, pages={501--529}, author={Großmaß, Lidan and Poon, Ser-Huang} }
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/32914"> <dcterms:abstract xml:lang="eng">We estimate the dynamic daily dependence between assets by applying the Semiparametric Copula-Based Multivariate Dynamic (SCOMDY) model on intraday data. Using tick data of three stock returns of the period before and during the credit crisis, we find that our dependence estimator better captures the steep increase in dependence during the onset of the crisis as compared to other commonly used time-varying copula methods. Like other high-frequency estimators, we find that the dependence estimator exhibits long memory and forecast it using a HAR model. We show that for out-of-sample forecasts, our dependence estimator performs better than the constant estimator and other commonly used time-varying copula dependence estimators.</dcterms:abstract> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:language>eng</dc:language> <dc:creator>Großmaß, Lidan</dc:creator> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/46"/> <dcterms:issued>2015</dcterms:issued> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2016-02-09T16:13:01Z</dcterms:available> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <dc:contributor>Großmaß, Lidan</dc:contributor> <dc:creator>Poon, Ser-Huang</dc:creator> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/32914"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/32914/3/Grossmass_0-302906.pdf"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/32914/3/Grossmass_0-302906.pdf"/> <dc:rights>terms-of-use</dc:rights> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2016-02-09T16:13:01Z</dc:date> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:contributor>Poon, Ser-Huang</dc:contributor> <dcterms:title>Estimating dynamic copula dependence using intraday data</dcterms:title> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/46"/> </rdf:Description> </rdf:RDF>
Grossmass_0-302906.pdf | 315 |