Estimating dynamic copula dependence using intraday data
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
We estimate the dynamic daily dependence between assets by applying the Semiparametric Copula-Based Multivariate Dynamic (SCOMDY) model on intraday data. Using tick data of three stock returns of the period before and during the credit crisis, we find that our dependence estimator better captures the steep increase in dependence during the onset of the crisis as compared to other commonly used time-varying copula methods. Like other high-frequency estimators, we find that the dependence estimator exhibits long memory and forecast it using a HAR model. We show that for out-of-sample forecasts, our dependence estimator performs better than the constant estimator and other commonly used time-varying copula dependence estimators.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
GROSSMASS, Lidan, Ser-Huang POON, 2015. Estimating dynamic copula dependence using intraday data. In: Studies in Nonlinear Dynamics & Econometrics. 2015, 19(4), pp. 501-529. ISSN 1081-1826. eISSN 1558-3708. Available under: doi: 10.1515/snde-2013-0123BibTex
@article{Groma2015Estim-32914, year={2015}, doi={10.1515/snde-2013-0123}, title={Estimating dynamic copula dependence using intraday data}, number={4}, volume={19}, issn={1081-1826}, journal={Studies in Nonlinear Dynamics & Econometrics}, pages={501--529}, author={Großmaß, Lidan and Poon, Ser-Huang} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/32914"> <dc:language>eng</dc:language> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:contributor>Poon, Ser-Huang</dc:contributor> <dcterms:issued>2015</dcterms:issued> <dc:creator>Poon, Ser-Huang</dc:creator> <dcterms:abstract xml:lang="eng">We estimate the dynamic daily dependence between assets by applying the Semiparametric Copula-Based Multivariate Dynamic (SCOMDY) model on intraday data. Using tick data of three stock returns of the period before and during the credit crisis, we find that our dependence estimator better captures the steep increase in dependence during the onset of the crisis as compared to other commonly used time-varying copula methods. Like other high-frequency estimators, we find that the dependence estimator exhibits long memory and forecast it using a HAR model. We show that for out-of-sample forecasts, our dependence estimator performs better than the constant estimator and other commonly used time-varying copula dependence estimators.</dcterms:abstract> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/46"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/32914/3/Grossmass_0-302906.pdf"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/46"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2016-02-09T16:13:01Z</dc:date> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/32914"/> <dcterms:title>Estimating dynamic copula dependence using intraday data</dcterms:title> <dc:creator>Großmaß, Lidan</dc:creator> <dc:contributor>Großmaß, Lidan</dc:contributor> <dc:rights>terms-of-use</dc:rights> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2016-02-09T16:13:01Z</dcterms:available> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/32914/3/Grossmass_0-302906.pdf"/> </rdf:Description> </rdf:RDF>