Paraxial Theory of Direct Electro-Optic Sampling of the Quantum Vacuum
Dateien
Datum
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Direct detection of vacuum fluctuations and analysis of subcycle quantum properties of the electric field are explored by a paraxial quantum theory of ultrafast electro-optic sampling. The feasibility of such experiments is demonstrated by realistic calculations adopting a thin ZnTe electro-optic crystal and stable few-femtosecond laser pulses. We show that nonlinear mixing of a short near-infrared probe pulse with the multiterahertz vacuum field leads to an increase of the signal variance with respect to the shot noise level. The vacuum contribution increases significantly for appropriate length of the nonlinear crystal, short pulse duration, tight focusing, and a sufficiently large number of photons per probe pulse. If the vacuum input is squeezed, the signal variance depends on the probe delay. Temporal positions with a noise level below the pure vacuum may be traced with subcycle resolution.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
MOSKALENKO, Andrey S., Claudius RIEK, Denis V. SELETSKIY, Guido BURKARD, Alfred LEITENSTORFER, 2015. Paraxial Theory of Direct Electro-Optic Sampling of the Quantum Vacuum. In: Physical Review Letters. 2015, 115(26), 263601. ISSN 0031-9007. eISSN 1079-7114. Available under: doi: 10.1103/PhysRevLett.115.263601BibTex
@article{Moskalenko2015Parax-32712, year={2015}, doi={10.1103/PhysRevLett.115.263601}, title={Paraxial Theory of Direct Electro-Optic Sampling of the Quantum Vacuum}, number={26}, volume={115}, issn={0031-9007}, journal={Physical Review Letters}, author={Moskalenko, Andrey S. and Riek, Claudius and Seletskiy, Denis V. and Burkard, Guido and Leitenstorfer, Alfred}, note={Article Number: 263601} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/32712"> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:issued>2015</dcterms:issued> <dcterms:abstract xml:lang="eng">Direct detection of vacuum fluctuations and analysis of subcycle quantum properties of the electric field are explored by a paraxial quantum theory of ultrafast electro-optic sampling. The feasibility of such experiments is demonstrated by realistic calculations adopting a thin ZnTe electro-optic crystal and stable few-femtosecond laser pulses. We show that nonlinear mixing of a short near-infrared probe pulse with the multiterahertz vacuum field leads to an increase of the signal variance with respect to the shot noise level. The vacuum contribution increases significantly for appropriate length of the nonlinear crystal, short pulse duration, tight focusing, and a sufficiently large number of photons per probe pulse. If the vacuum input is squeezed, the signal variance depends on the probe delay. Temporal positions with a noise level below the pure vacuum may be traced with subcycle resolution.</dcterms:abstract> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/32712"/> <dc:creator>Burkard, Guido</dc:creator> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/> <dc:contributor>Leitenstorfer, Alfred</dc:contributor> <dc:contributor>Riek, Claudius</dc:contributor> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/32712/1/Leitenstorfer_0-318686.pdf"/> <dc:creator>Seletskiy, Denis V.</dc:creator> <dc:contributor>Burkard, Guido</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2016-01-26T13:02:10Z</dcterms:available> <dc:contributor>Moskalenko, Andrey S.</dc:contributor> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/32712/1/Leitenstorfer_0-318686.pdf"/> <dc:creator>Riek, Claudius</dc:creator> <dc:creator>Leitenstorfer, Alfred</dc:creator> <dc:rights>terms-of-use</dc:rights> <dc:creator>Moskalenko, Andrey S.</dc:creator> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/> <dcterms:title>Paraxial Theory of Direct Electro-Optic Sampling of the Quantum Vacuum</dcterms:title> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:contributor>Seletskiy, Denis V.</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2016-01-26T13:02:10Z</dc:date> <dc:language>eng</dc:language> </rdf:Description> </rdf:RDF>