ITRM-recognizability from Random Oracles

Zitieren

Dateien zu dieser Ressource

Dateien Größe Format Anzeige

Zu diesem Dokument gibt es keine Dateien.

CARL, Merlin, 2015. ITRM-recognizability from Random Oracles. 11th Conference on Computability in Europe, CiE 2015. Bucharest, 29. Jun 2015 - 3. Jul 2015. In: BECKMANN, Arnold, ed. and others. Evolving Computability : 11th Conference on Computability in Europe, CiE 2015, Bucharest, Romania, June 29-July 3, 2015 ; Proceedings. 11th Conference on Computability in Europe, CiE 2015. Bucharest, 29. Jun 2015 - 3. Jul 2015. Cham [u.a.]:Springer, pp. 137-144. ISSN 0302-9743. eISSN 1611-3349. ISBN 978-3-319-20027-9

@inproceedings{Carl2015ITRM--32710, title={ITRM-recognizability from Random Oracles}, year={2015}, doi={10.1007/978-3-319-20028-6_14}, number={9136}, isbn={978-3-319-20027-9}, issn={0302-9743}, address={Cham [u.a.]}, publisher={Springer}, series={Lecture Notes in Computer Science}, booktitle={Evolving Computability : 11th Conference on Computability in Europe, CiE 2015, Bucharest, Romania, June 29-July 3, 2015 ; Proceedings}, pages={137--144}, editor={Beckmann, Arnold}, author={Carl, Merlin} }

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:dcterms="http://purl.org/dc/terms/" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/32710"> <dcterms:issued>2015</dcterms:issued> <dcterms:title>ITRM-recognizability from Random Oracles</dcterms:title> <dc:language>eng</dc:language> <dcterms:abstract xml:lang="eng">By a theorem of Sacks, if a real x is recursive relative to all elements of a set of positive Lebesgue measure, x is recursive. This statement - and the analogous statement for non-meagerness instead of positive Lebesgue measure - has been shown to carry over to many models of transfinite computations in [7]. Here, we start exploring another analogue concerning recognizability rather than computability. We show that, for Infinite Time Register Machines (ITRMs), if a real x is recognizable relative to all elements of a non-meager Borel set Y, then x is recognizable.</dcterms:abstract> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/32710"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2016-01-26T12:57:05Z</dcterms:available> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2016-01-26T12:57:05Z</dc:date> <dc:creator>Carl, Merlin</dc:creator> <dc:contributor>Carl, Merlin</dc:contributor> </rdf:Description> </rdf:RDF>

Das Dokument erscheint in:

KOPS Suche


Stöbern

Mein Benutzerkonto