Network ensemble clustering using latent roles

Thumbnail Image
Date
2010
Editors
Contact
Journal ISSN
Electronic ISSN
ISBN
Bibliographical data
Publisher
Series
DOI (citable link)
ArXiv-ID
International patent number
Link to the license
EU project number
211898
Project
BISON, RTD Forschungsprojekt
Open Access publication
Restricted until
Title in another language
Research Projects
Organizational Units
Journal Issue
Publication type
Journal article
Publication status
Published in
Advances in Data Analysis and Classification ; 5 (2010), 2. - pp. 81-94. - ISSN 1862-5347
Abstract
We present a clustering method for collections of graphs based on the assumptions that graphs in the same cluster have a similar role structure and that the respective roles can be founded on implicit vertex types. Given a network ensemble (a collection of attributed graphs with some substantive commonality), we start by partitioning the set of all vertices based on attribute similarity. Projection of each graph onto the resulting vertex types yields feature vectors of equal dimensionality, irrespective of the original graph sizes. These feature vectors are then subjected to standard clustering methods. This approach is motivated by social network concepts, and we demonstrate its utility on an ensemble of personal networks of migrants, where we extract structurally similar groups and show their resemblance to predicted acculturation strategies.
Summary in another language
Subject (DDC)
004 Computer Science
Keywords
Social network analysis,Clustering,Network ensembles,Acculturation
Conference
Review
undefined / . - undefined, undefined. - (undefined; undefined)
Cite This
ISO 690BRANDES, Ulrik, Jürgen LERNER, Uwe NAGEL, 2010. Network ensemble clustering using latent roles. In: Advances in Data Analysis and Classification. 5(2), pp. 81-94. ISSN 1862-5347. Available under: doi: 10.1007/s11634-010-0074-3
BibTex
@article{Brandes2010Netwo-325,
  year={2010},
  doi={10.1007/s11634-010-0074-3},
  title={Network ensemble clustering using latent roles},
  number={2},
  volume={5},
  issn={1862-5347},
  journal={Advances in Data Analysis and Classification},
  pages={81--94},
  author={Brandes, Ulrik and Lerner, Jürgen and Nagel, Uwe}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/325">
    <dcterms:title>Network ensemble clustering using latent roles</dcterms:title>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/325/1/Brandes.pdf"/>
    <dcterms:bibliographicCitation>First publ. in: Advances in Data Analysis and Classification 5 (2011), 2, pp. 81-94</dcterms:bibliographicCitation>
    <dc:contributor>Lerner, Jürgen</dc:contributor>
    <dcterms:issued>2010</dcterms:issued>
    <dc:contributor>Nagel, Uwe</dc:contributor>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-06-20T09:51:20Z</dc:date>
    <dc:creator>Nagel, Uwe</dc:creator>
    <dc:creator>Lerner, Jürgen</dc:creator>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/325"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/325/1/Brandes.pdf"/>
    <dc:language>eng</dc:language>
    <dcterms:abstract xml:lang="eng">We present a clustering method for collections of graphs based on the assumptions that graphs in the same cluster have a similar role structure and that the respective roles can be founded on implicit vertex types. Given a network ensemble (a collection of attributed graphs with some substantive commonality), we start by partitioning the set of all vertices based on attribute similarity. Projection of each graph onto the resulting vertex types yields feature vectors of equal dimensionality, irrespective of the original graph sizes. These feature vectors are then subjected to standard clustering methods. This approach is motivated by social network concepts, and we demonstrate its utility on an ensemble of personal networks of migrants, where we extract structurally similar groups and show their resemblance to predicted acculturation strategies.</dcterms:abstract>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:rights>terms-of-use</dc:rights>
    <dc:contributor>Brandes, Ulrik</dc:contributor>
    <dc:creator>Brandes, Ulrik</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:format>application/pdf</dc:format>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2012-03-31T22:25:05Z</dcterms:available>
  </rdf:Description>
</rdf:RDF>
Internal note
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Contact
URL of original publication
Test date of URL
Examination date of dissertation
Method of financing
Comment on publication
Alliance license
Corresponding Authors der Uni Konstanz vorhanden
International Co-Authors
Bibliography of Konstanz
Yes
Refereed