Type of Publication: | Contribution to a conference collection |
Publication status: | Published |
Author: | Iapichino, Laura; Volkwein, Stefan |
Year of publication: | 2015 |
Conference: | MATHMOD 2015 : 8th Vienna International Conference on Mathematical Modelling, Feb 18, 2015 - Feb 20, 2015, Wien |
Published in: | 8th Vienna International Conference on Mathematical Modelling : MATHMOD 2015 ; Proceedings / Breitenecker, Felix et al. (ed.). - Elsevier, 2015. - (IFAC-PapersOnline ; 48,1). - pp. 707-712. - eISSN 2405-8963 |
DOI (citable link): | https://dx.doi.org/10.1016/j.ifacol.2015.05.020 |
Summary: |
The reduced basis (RB) method is an efficient technique to solve parametric partial differential equations in a multi-query context, where the solution has to be computed for many different parameter values. The RB method drastically reduces the computational time for any additional solution (during the so-called online stage) once an initial set of basis functions has been computed (during the so-called offline stage) still retaining a certified level of accuracy. The greedy algorithm is the classical sampling strategy to select parameter values that define the set of basis functions. Here, an alternative and competitive approach for choosing the parameter values is presented. The new approach is based on an optimization problem for the parameters that allows to reduce the computational complexity of the offline stage of the RB method and improve its effectiveness.
|
Subject (DDC): | 510 Mathematics |
Bibliography of Konstanz: | Yes |
Files | Size | Format | View |
---|---|---|---|
There are no files associated with this item. |
IAPICHINO, Laura, Stefan VOLKWEIN, 2015. Optimization strategy for parameter sampling in the reduced basis method. MATHMOD 2015 : 8th Vienna International Conference on Mathematical Modelling. Wien, Feb 18, 2015 - Feb 20, 2015. In: BREITENECKER, Felix, ed. and others. 8th Vienna International Conference on Mathematical Modelling : MATHMOD 2015 ; Proceedings. Elsevier, pp. 707-712. eISSN 2405-8963. Available under: doi: 10.1016/j.ifacol.2015.05.020
@inproceedings{Iapichino2015Optim-32354, title={Optimization strategy for parameter sampling in the reduced basis method}, year={2015}, doi={10.1016/j.ifacol.2015.05.020}, number={48,1}, publisher={Elsevier}, series={IFAC-PapersOnline}, booktitle={8th Vienna International Conference on Mathematical Modelling : MATHMOD 2015 ; Proceedings}, pages={707--712}, editor={Breitenecker, Felix}, author={Iapichino, Laura and Volkwein, Stefan} }
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/32354"> <dcterms:abstract xml:lang="eng">The reduced basis (RB) method is an efficient technique to solve parametric partial differential equations in a multi-query context, where the solution has to be computed for many different parameter values. The RB method drastically reduces the computational time for any additional solution (during the so-called online stage) once an initial set of basis functions has been computed (during the so-called offline stage) still retaining a certified level of accuracy. The greedy algorithm is the classical sampling strategy to select parameter values that define the set of basis functions. Here, an alternative and competitive approach for choosing the parameter values is presented. The new approach is based on an optimization problem for the parameters that allows to reduce the computational complexity of the offline stage of the RB method and improve its effectiveness.</dcterms:abstract> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/39"/> <dc:language>eng</dc:language> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/32354"/> <dcterms:issued>2015</dcterms:issued> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/39"/> <dc:creator>Volkwein, Stefan</dc:creator> <dc:contributor>Volkwein, Stefan</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-12-07T09:50:30Z</dc:date> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-12-07T09:50:30Z</dcterms:available> <dc:contributor>Iapichino, Laura</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/52"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/52"/> <dcterms:title>Optimization strategy for parameter sampling in the reduced basis method</dcterms:title> <dc:creator>Iapichino, Laura</dc:creator> </rdf:Description> </rdf:RDF>