KOPS - Das Institutionelle Repositorium der Universität Konstanz

Adaptive POD basis computation for parametrized nonlinear systems using optimal snapshot location

Adaptive POD basis computation for parametrized nonlinear systems using optimal snapshot location

Zitieren

Dateien zu dieser Ressource

Dateien Größe Format Anzeige

Zu diesem Dokument gibt es keine Dateien.

LASS, Oliver, Stefan VOLKWEIN, 2014. Adaptive POD basis computation for parametrized nonlinear systems using optimal snapshot location. In: Computational Optimization and Applications. 58(3), pp. 645-677. ISSN 0926-6003. eISSN 1573-2894

@article{Lass2014Adapt-32340, title={Adaptive POD basis computation for parametrized nonlinear systems using optimal snapshot location}, year={2014}, doi={10.1007/s10589-014-9646-z}, number={3}, volume={58}, issn={0926-6003}, journal={Computational Optimization and Applications}, pages={645--677}, author={Lass, Oliver and Volkwein, Stefan} }

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:dcterms="http://purl.org/dc/terms/" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/32340"> <dcterms:issued>2014</dcterms:issued> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-12-04T09:59:23Z</dcterms:available> <dcterms:abstract xml:lang="eng">The construction of reduced-order models for parametrized partial differential systems using proper orthogonal decomposition (POD) is based on the information of the so-called snapshots. These provide the spatial distribution of the nonlinear system at discrete parameter and/or time instances. In this work a strategy is used, where the POD reduced-order model is improved by choosing additional snapshot locations in an optimal way; see Kunisch and Volkwein (ESAIM: M2AN, 44:509–529, 2010). These optimal snapshot locations influences the POD basis functions and therefore the POD reduced-order model. This strategy is used to build up a POD basis on a parameter set in an adaptive way. The approach is illustrated by the construction of the POD reduced-order model for the complex-valued Helmholtz equation.</dcterms:abstract> <dc:contributor>Volkwein, Stefan</dc:contributor> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/32340"/> <dcterms:title>Adaptive POD basis computation for parametrized nonlinear systems using optimal snapshot location</dcterms:title> <dc:creator>Volkwein, Stefan</dc:creator> <dc:contributor>Lass, Oliver</dc:contributor> <dc:language>eng</dc:language> <dc:creator>Lass, Oliver</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-12-04T09:59:23Z</dc:date> </rdf:Description> </rdf:RDF>

Das Dokument erscheint in:

KOPS Suche


Stöbern

Mein Benutzerkonto