Type of Publication: | Contribution to a conference collection |
URI (citable link): | http://nbn-resolving.de/urn:nbn:de:bsz:352-0-300924 |
Author: | Weiler, Andreas; Grossniklaus, Michael; Scholl, Marc H. |
Year of publication: | 2015 |
Conference: | 30th British International Conference on Databases, BICOD 2015, Jul 6, 2015 - Jul 8, 2015, Edinburgh |
Published in: | Data Science : 30th British International Conference on Databases, BICOD 2015, Edinburgh, UK, July 6-8, 2015; Proceedings / Sebastian Maneth (ed.). - Cham [u.a.] : Springer, 2015. - (Lecture Notes in Computer Science ; 9147). - pp. 108-119. - ISSN 0302-9743. - eISSN 1611-3349. - ISBN 978-3-319-20423-9 |
DOI (citable link): | https://dx.doi.org/10.1007/978-3-319-20424-6_11 |
Summary: |
Twitter’s popularity as a source of up-to-date news and information is constantly increasing. In response to this trend, numerous event detection techniques have been proposed to cope with the rate and volume of social media data streams. Although most of these works conduct some evaluation of the proposed technique, a comparative study is often omitted. In this paper, we present a series of measures that we designed to support the quantitative and qualitative comparison of event detection techniques. In order to demonstrate the effectiveness of these measures, we apply them to state-of-the-art event detection techniques as well as baseline approaches using real-world Twitter streaming data.
|
Subject (DDC): | 004 Computer Science |
Link to License: | In Copyright |
Bibliography of Konstanz: | Yes |
WEILER, Andreas, Michael GROSSNIKLAUS, Marc H. SCHOLL, 2015. Evaluation Measures for Event Detection Techniques on Twitter Data Streams. 30th British International Conference on Databases, BICOD 2015. Edinburgh, Jul 6, 2015 - Jul 8, 2015. In: SEBASTIAN MANETH, , ed.. Data Science : 30th British International Conference on Databases, BICOD 2015, Edinburgh, UK, July 6-8, 2015; Proceedings. Cham [u.a.]:Springer, pp. 108-119. ISSN 0302-9743. eISSN 1611-3349. ISBN 978-3-319-20423-9. Available under: doi: 10.1007/978-3-319-20424-6_11
@inproceedings{Weiler2015Evalu-32039, title={Evaluation Measures for Event Detection Techniques on Twitter Data Streams}, year={2015}, doi={10.1007/978-3-319-20424-6_11}, number={9147}, isbn={978-3-319-20423-9}, issn={0302-9743}, address={Cham [u.a.]}, publisher={Springer}, series={Lecture Notes in Computer Science}, booktitle={Data Science : 30th British International Conference on Databases, BICOD 2015, Edinburgh, UK, July 6-8, 2015; Proceedings}, pages={108--119}, editor={Sebastian Maneth}, author={Weiler, Andreas and Grossniklaus, Michael and Scholl, Marc H.} }
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/32039"> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/36"/> <dc:language>eng</dc:language> <dc:creator>Weiler, Andreas</dc:creator> <dcterms:abstract xml:lang="eng">Twitter’s popularity as a source of up-to-date news and information is constantly increasing. In response to this trend, numerous event detection techniques have been proposed to cope with the rate and volume of social media data streams. Although most of these works conduct some evaluation of the proposed technique, a comparative study is often omitted. In this paper, we present a series of measures that we designed to support the quantitative and qualitative comparison of event detection techniques. In order to demonstrate the effectiveness of these measures, we apply them to state-of-the-art event detection techniques as well as baseline approaches using real-world Twitter streaming data.</dcterms:abstract> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/36"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/32039/1/Weiler_0-300924.pdf"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/32039/1/Weiler_0-300924.pdf"/> <dcterms:title>Evaluation Measures for Event Detection Techniques on Twitter Data Streams</dcterms:title> <dc:contributor>Weiler, Andreas</dc:contributor> <dc:contributor>Grossniklaus, Michael</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-11-03T09:56:03Z</dcterms:available> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-11-03T09:56:03Z</dc:date> <dc:rights>terms-of-use</dc:rights> <dc:contributor>Scholl, Marc H.</dc:contributor> <dcterms:issued>2015</dcterms:issued> <dc:creator>Scholl, Marc H.</dc:creator> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <dc:creator>Grossniklaus, Michael</dc:creator> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/32039"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> </rdf:Description> </rdf:RDF>
Weiler_0-300924.pdf | 1339 |