Symbolic Causality Checking Using Bounded Model Checking

Thumbnail Image
Date
2015
Editors
Contact
Journal ISSN
Electronic ISSN
ISBN
Bibliographical data
Publisher
Series
URI (citable link)
DOI (citable link)
ArXiv-ID
International patent number
Link to the license
EU project number
Project
Open Access publication
Restricted until
Title in another language
Research Projects
Organizational Units
Journal Issue
Publication type
Preprint
Publication status
Published in
Abstract
In precursory work we have developed causality checking, a fault localization method for concurrent system models relying on the Halpern and Pearl counterfactual model of causation that identifies ordered occurrences of system events as being causal for the violation of non-reachability properties. Our first implementation of causality checking relies on explicit-state model checking. In this paper we propose a symbolic implementation of causality checking based on bounded model checking (BMC) and SAT solving. We show that this BMC-based implementation is effcient for large and complex system models. The technique is evaluated on industrial size models and experimentally compared to the existing explicit state causality checking implementation. BMC-based causality checking turns out to be superior to the explicit state variant in terms of runtime and memory consumption for very large system models.
Summary in another language
Subject (DDC)
004 Computer Science
Keywords
Conference
Review
undefined / . - undefined, undefined. - (undefined; undefined)
Cite This
ISO 690BEER, Adrian, Stephan HEIDINGER, Uwe KÜHNE, Florian LEITNER-FISCHER, Stefan LEUE, 2015. Symbolic Causality Checking Using Bounded Model Checking
BibTex
@unpublished{Beer2015Symbo-31923,
  year={2015},
  title={Symbolic Causality Checking Using Bounded Model Checking},
  author={Beer, Adrian and Heidinger, Stephan and Kühne, Uwe and Leitner-Fischer, Florian and Leue, Stefan}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/31923">
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/31923/5/Beer_294967.pdf"/>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/31923"/>
    <dc:contributor>Beer, Adrian</dc:contributor>
    <dc:contributor>Leue, Stefan</dc:contributor>
    <dc:creator>Leitner-Fischer, Florian</dc:creator>
    <dc:contributor>Leitner-Fischer, Florian</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:creator>Heidinger, Stephan</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-10-07T10:16:14Z</dc:date>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/31923/5/Beer_294967.pdf"/>
    <dc:contributor>Heidinger, Stephan</dc:contributor>
    <dcterms:issued>2015</dcterms:issued>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-10-07T10:16:14Z</dcterms:available>
    <dcterms:title>Symbolic Causality Checking Using Bounded Model Checking</dcterms:title>
    <dc:creator>Kühne, Uwe</dc:creator>
    <dc:contributor>Kühne, Uwe</dc:contributor>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:abstract xml:lang="eng">In precursory work we have developed causality checking, a fault localization method for concurrent system models relying on the Halpern and Pearl counterfactual model of causation that identifies ordered occurrences of system events as being causal for the violation of non-reachability properties. Our first implementation of causality checking relies on explicit-state model checking. In this paper we propose a symbolic implementation of causality checking based on bounded model checking (BMC) and SAT solving. We show that this BMC-based implementation is effcient for large and complex system models. The technique is evaluated on industrial size models and experimentally compared to the existing explicit state causality checking implementation. BMC-based causality checking turns out to be superior to the explicit state variant in terms of runtime and memory consumption for very large system models.</dcterms:abstract>
    <dc:creator>Beer, Adrian</dc:creator>
    <dc:creator>Leue, Stefan</dc:creator>
    <dc:language>eng</dc:language>
  </rdf:Description>
</rdf:RDF>
Internal note
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Contact
URL of original publication
Test date of URL
Examination date of dissertation
Method of financing
Comment on publication
Alliance license
Corresponding Authors der Uni Konstanz vorhanden
International Co-Authors
Bibliography of Konstanz
Yes
Refereed