Hierarchical interestingness measures for association rules with generalization on both antecedent and consequent sides
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Abstract Pairwise generalized association rules mined from raw data can be used to connect the concepts of multiple ontologies. In this case the items of rules are hierarchically organized and one can use the relations between them in order to reduce rule redundancy. Recently proposed hierarchical interestingness measures address this issue, taking hierarchical information on the antecedent side into account. In this paper, we extend them to the case of considering two hierarchies on both the antecedent and the consequent sides of a rule. The extended measures are then compared with their counterparts as well as with conventional ones. Three real world datasets from the text mining domain with predefined ground truth sets of associations are used for comparison within the framework of instance-based ontology mapping.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
BENITES, Fernando, Elena SAPOZHNIKOVA, 2015. Hierarchical interestingness measures for association rules with generalization on both antecedent and consequent sides. In: Pattern Recognition Letters. 2015, 65, pp. 197-203. ISSN 0167-8655. eISSN 1872-7344. Available under: doi: 10.1016/j.patrec.2015.07.027BibTex
@article{Benites2015Hiera-31863, year={2015}, doi={10.1016/j.patrec.2015.07.027}, title={Hierarchical interestingness measures for association rules with generalization on both antecedent and consequent sides}, volume={65}, issn={0167-8655}, journal={Pattern Recognition Letters}, pages={197--203}, author={Benites, Fernando and Sapozhnikova, Elena} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/31863"> <dc:language>eng</dc:language> <dcterms:abstract xml:lang="eng">Abstract Pairwise generalized association rules mined from raw data can be used to connect the concepts of multiple ontologies. In this case the items of rules are hierarchically organized and one can use the relations between them in order to reduce rule redundancy. Recently proposed hierarchical interestingness measures address this issue, taking hierarchical information on the antecedent side into account. In this paper, we extend them to the case of considering two hierarchies on both the antecedent and the consequent sides of a rule. The extended measures are then compared with their counterparts as well as with conventional ones. Three real world datasets from the text mining domain with predefined ground truth sets of associations are used for comparison within the framework of instance-based ontology mapping.</dcterms:abstract> <dc:creator>Sapozhnikova, Elena</dc:creator> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/31863"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:contributor>Sapozhnikova, Elena</dc:contributor> <dc:creator>Benites, Fernando</dc:creator> <dc:contributor>Benites, Fernando</dc:contributor> <dcterms:title>Hierarchical interestingness measures for association rules with generalization on both antecedent and consequent sides</dcterms:title> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-09-30T09:02:32Z</dcterms:available> <dcterms:issued>2015</dcterms:issued> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-09-30T09:02:32Z</dc:date> </rdf:Description> </rdf:RDF>