KOPS - The Institutional Repository of the University of Konstanz

Hierarchical interestingness measures for association rules with generalization on both antecedent and consequent sides

Hierarchical interestingness measures for association rules with generalization on both antecedent and consequent sides

Cite This

Files in this item

Files Size Format View

There are no files associated with this item.

BENITES, Fernando, Elena SAPOZHNIKOVA, 2015. Hierarchical interestingness measures for association rules with generalization on both antecedent and consequent sides. In: Pattern Recognition Letters. 65, pp. 197-203. ISSN 0167-8655. eISSN 1872-7344. Available under: doi: 10.1016/j.patrec.2015.07.027

@article{Benites2015Hiera-31863, title={Hierarchical interestingness measures for association rules with generalization on both antecedent and consequent sides}, year={2015}, doi={10.1016/j.patrec.2015.07.027}, volume={65}, issn={0167-8655}, journal={Pattern Recognition Letters}, pages={197--203}, author={Benites, Fernando and Sapozhnikova, Elena} }

<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/31863"> <dc:contributor>Sapozhnikova, Elena</dc:contributor> <dc:creator>Sapozhnikova, Elena</dc:creator> <dcterms:abstract xml:lang="eng">Abstract Pairwise generalized association rules mined from raw data can be used to connect the concepts of multiple ontologies. In this case the items of rules are hierarchically organized and one can use the relations between them in order to reduce rule redundancy. Recently proposed hierarchical interestingness measures address this issue, taking hierarchical information on the antecedent side into account. In this paper, we extend them to the case of considering two hierarchies on both the antecedent and the consequent sides of a rule. The extended measures are then compared with their counterparts as well as with conventional ones. Three real world datasets from the text mining domain with predefined ground truth sets of associations are used for comparison within the framework of instance-based ontology mapping.</dcterms:abstract> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-09-30T09:02:32Z</dcterms:available> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-09-30T09:02:32Z</dc:date> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/36"/> <dc:language>eng</dc:language> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <dcterms:title>Hierarchical interestingness measures for association rules with generalization on both antecedent and consequent sides</dcterms:title> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/31863"/> <dcterms:issued>2015</dcterms:issued> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/36"/> <dc:creator>Benites, Fernando</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:contributor>Benites, Fernando</dc:contributor> </rdf:Description> </rdf:RDF>

This item appears in the following Collection(s)

Search KOPS


Browse

My Account