Hierarchical interestingness measures for association rules with generalization on both antecedent and consequent sides

Lade...
Vorschaubild
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2015
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
DAMIART
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Pattern Recognition Letters. 2015, 65, pp. 197-203. ISSN 0167-8655. eISSN 1872-7344. Available under: doi: 10.1016/j.patrec.2015.07.027
Zusammenfassung

Abstract Pairwise generalized association rules mined from raw data can be used to connect the concepts of multiple ontologies. In this case the items of rules are hierarchically organized and one can use the relations between them in order to reduce rule redundancy. Recently proposed hierarchical interestingness measures address this issue, taking hierarchical information on the antecedent side into account. In this paper, we extend them to the case of considering two hierarchies on both the antecedent and the consequent sides of a rule. The extended measures are then compared with their counterparts as well as with conventional ones. Three real world datasets from the text mining domain with predefined ground truth sets of associations are used for comparison within the framework of instance-based ontology mapping.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
004 Informatik
Schlagwörter
Ontology matching; Association Rules; Data Mining; Interestingness Measures
Konferenz
Rezension
undefined / . - undefined, undefined
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Datensätze
Zitieren
ISO 690BENITES, Fernando, Elena SAPOZHNIKOVA, 2015. Hierarchical interestingness measures for association rules with generalization on both antecedent and consequent sides. In: Pattern Recognition Letters. 2015, 65, pp. 197-203. ISSN 0167-8655. eISSN 1872-7344. Available under: doi: 10.1016/j.patrec.2015.07.027
BibTex
@article{Benites2015Hiera-31863,
  year={2015},
  doi={10.1016/j.patrec.2015.07.027},
  title={Hierarchical interestingness measures for association rules with generalization on both antecedent and consequent sides},
  volume={65},
  issn={0167-8655},
  journal={Pattern Recognition Letters},
  pages={197--203},
  author={Benites, Fernando and Sapozhnikova, Elena}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/31863">
    <dc:language>eng</dc:language>
    <dcterms:abstract xml:lang="eng">Abstract Pairwise generalized association rules mined from raw data can be used to connect the concepts of multiple ontologies. In this case the items of rules are hierarchically organized and one can use the relations between them in order to reduce rule redundancy. Recently proposed hierarchical interestingness measures address this issue, taking hierarchical information on the antecedent side into account. In this paper, we extend them to the case of considering two hierarchies on both the antecedent and the consequent sides of a rule. The extended measures are then compared with their counterparts as well as with conventional ones. Three real world datasets from the text mining domain with predefined ground truth sets of associations are used for comparison within the framework of instance-based ontology mapping.</dcterms:abstract>
    <dc:creator>Sapozhnikova, Elena</dc:creator>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/31863"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:contributor>Sapozhnikova, Elena</dc:contributor>
    <dc:creator>Benites, Fernando</dc:creator>
    <dc:contributor>Benites, Fernando</dc:contributor>
    <dcterms:title>Hierarchical interestingness measures for association rules with generalization on both antecedent and consequent sides</dcterms:title>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-09-30T09:02:32Z</dcterms:available>
    <dcterms:issued>2015</dcterms:issued>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-09-30T09:02:32Z</dc:date>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen