Efficient Contrast Effect Compensation with Personalized Perception Models

Zitieren

Dateien zu dieser Ressource

Prüfsumme: MD5:fa8d62c1312768f351864572a73eb7f5

MITTELSTÄDT, Sebastian, Daniel A. KEIM, 2015. Efficient Contrast Effect Compensation with Personalized Perception Models. In: Computer Graphics Forum. 34(3), pp. 211-220. ISSN 0167-7055. eISSN 1467-8659

@article{Mittelstadt2015Effic-31762, title={Efficient Contrast Effect Compensation with Personalized Perception Models}, year={2015}, doi={10.1111/cgf.12633}, number={3}, volume={34}, issn={0167-7055}, journal={Computer Graphics Forum}, pages={211--220}, author={Mittelstädt, Sebastian and Keim, Daniel A.} }

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:dcterms="http://purl.org/dc/terms/" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/31762"> <dcterms:title>Efficient Contrast Effect Compensation with Personalized Perception Models</dcterms:title> <dcterms:rights rdf:resource="http://nbn-resolving.de/urn:nbn:de:bsz:352-20150914100631302-4485392-8"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-09-16T13:38:35Z</dc:date> <dcterms:issued>2015</dcterms:issued> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/31762"/> <dc:creator>Mittelstädt, Sebastian</dc:creator> <dc:contributor>Keim, Daniel A.</dc:contributor> <dc:contributor>Mittelstädt, Sebastian</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-09-16T13:38:35Z</dcterms:available> <dc:creator>Keim, Daniel A.</dc:creator> <dc:language>eng</dc:language> <dcterms:abstract xml:lang="eng">Color is one of the most effective visual variables and is frequently used to encode metric quantities. Contrast effects are considered harmful in data visualizations since they significantly bias our perception of colors. For instance, a gray patch appears brighter on a black background than on a white background. Accordingly, the perception of color-encoded data items depends on the surround in the rendered visualization. A method that compensates for contrast effects has been presented previously, which significantly improves the users’ accuracy in reading and comparing color encoded data. The method utilizes established perception models to compensate for contrast effects, assuming an average human observer. In this paper, we provide experiments that show a significant difference in the perception of users. We introduce methods to personalize contrast effect compensation and show that this outperforms the original method with a user study. We, further, overcome the major limitation of the original method, which is a runtime of several minutes. With the use of efficient optimization and surrogate models, we are able to reduce runtime to milliseconds, making the method applicable in interactive visualizations.</dcterms:abstract> </rdf:Description> </rdf:RDF>

Dateiabrufe seit 16.09.2015 (Informationen über die Zugriffsstatistik)

Keim_0-297284.pdf 43

Das Dokument erscheint in:

KOPS Suche


Stöbern

Mein Benutzerkonto