A structurally damped plate equation with Dirichlet-Neumann boundary conditions

Zitieren

Dateien zu dieser Ressource

Dateien Größe Format Anzeige

Zu diesem Dokument gibt es keine Dateien.

DENK, Robert, Roland SCHNAUBELT, 2015. A structurally damped plate equation with Dirichlet-Neumann boundary conditions. In: Journal of Differential Equations. 259(4), pp. 1323-1353. ISSN 0022-0396. eISSN 1090-2732

@article{Denk2015struc-31760, title={A structurally damped plate equation with Dirichlet-Neumann boundary conditions}, year={2015}, doi={10.1016/j.jde.2015.02.043}, number={4}, volume={259}, issn={0022-0396}, journal={Journal of Differential Equations}, pages={1323--1353}, author={Denk, Robert and Schnaubelt, Roland} }

2015 Denk, Robert Schnaubelt, Roland 2015-09-16T13:34:39Z We investigate sectoriality and maximal regularity in L<sup>p</sup>–L<sup>q</sup>-Sobolev spaces for the structurally damped plate equation with Dirichlet–Neumann (clamped) boundary conditions. We obtain unique solutions with optimal regularity for the inhomogeneous problem in the whole space, in the half-space, and in bounded domains of class C<sup>4</sup>. It turns out that the first-order system related to the scalar equation on R<sup>n</sup> is sectorial only after a shift in the operator. On the half-space one has to include zero boundary conditions in the underlying function space in order to obtain sectoriality of the shifted operator and maximal regularity for the case of homogeneous boundary conditions. We further show that the semigroup solving the problem on bounded domains is exponentially stable. A structurally damped plate equation with Dirichlet-Neumann boundary conditions Denk, Robert Schnaubelt, Roland eng 2015-09-16T13:34:39Z

Das Dokument erscheint in:

KOPS Suche


Stöbern

Mein Benutzerkonto