An algebraic perspective on multivariate tight wavelet frames : II

Cite This

Files in this item

Files Size Format View

There are no files associated with this item.

CHARINA, Maria, Mihai PUTINAR, Claus SCHEIDERER, Joachim STÖCKLER, 2015. An algebraic perspective on multivariate tight wavelet frames : II. In: Applied and Computational Harmonic Analysis. 39(2), pp. 185-213. ISSN 1063-5203. eISSN 1096-603X. Available under: doi: 10.1016/j.acha.2014.09.003

@article{Charina2015algeb-31753, title={An algebraic perspective on multivariate tight wavelet frames : II}, year={2015}, doi={10.1016/j.acha.2014.09.003}, number={2}, volume={39}, issn={1063-5203}, journal={Applied and Computational Harmonic Analysis}, pages={185--213}, author={Charina, Maria and Putinar, Mihai and Scheiderer, Claus and Stöckler, Joachim} }

<rdf:RDF xmlns:dcterms="" xmlns:dc="" xmlns:rdf="" xmlns:bibo="" xmlns:dspace="" xmlns:foaf="" xmlns:void="" xmlns:xsd="" > <rdf:Description rdf:about=""> <dcterms:isPartOf rdf:resource=""/> <dcterms:available rdf:datatype="">2015-09-15T09:34:16Z</dcterms:available> <dcterms:abstract xml:lang="eng">Continuing our recent work in [5] we study polynomial masks of multivariate tight wavelet frames from two additional and complementary points of view: convexity and system theory. We consider such polynomial masks that are derived by means of the unitary extension principle from a single polynomial. We show that the set of such polynomials is convex and reveal its extremal points as polynomials that satisfy the quadrature mirror filter condition. Multiplicative structure of this polynomial set allows us to improve the known upper bounds on the number of frame generators derived from box splines. Moreover, in the univariate and bivariate settings, the polynomial masks of a tight wavelet frame can be interpreted as the transfer function of a conservative multivariate linear system. Recent advances in system theory enable us to develop a more effective method for tight frame constructions. Employing an example by S.W. Drury, we show that for dimension greater than 2 such transfer function representations of the corresponding polynomial masks do not always exist. However, for all wavelet masks derived from multivariate polynomials with non-negative coefficients, we determine explicit transfer function representations. We illustrate our results with several examples.</dcterms:abstract> <dcterms:title>An algebraic perspective on multivariate tight wavelet frames : II</dcterms:title> <dc:date rdf:datatype="">2015-09-15T09:34:16Z</dc:date> <dc:contributor>Charina, Maria</dc:contributor> <dc:contributor>Scheiderer, Claus</dc:contributor> <dcterms:issued>2015</dcterms:issued> <dc:creator>Scheiderer, Claus</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:language>eng</dc:language> <dc:contributor>Putinar, Mihai</dc:contributor> <dc:creator>Charina, Maria</dc:creator> <bibo:uri rdf:resource=""/> <dspace:isPartOfCollection rdf:resource=""/> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <dc:creator>Stöckler, Joachim</dc:creator> <dc:creator>Putinar, Mihai</dc:creator> <dc:contributor>Stöckler, Joachim</dc:contributor> </rdf:Description> </rdf:RDF>

This item appears in the following Collection(s)

Search KOPS


My Account