Existential ∅-Definability of Henselian Valuation Rings

Lade...
Vorschaubild
Dateien
Fehm_0-287143.pdf
Fehm_0-287143.pdfGröße: 110.72 KBDownloads: 178
Datum
2015
Autor:innen
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
EU-Projektnummer
DFG-Projektnummer
Projekt
Open Access-Veröffentlichung
Gesperrt bis
Titel in einer weiteren Sprache
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
unikn.publication.listelement.citation.prefix.version.undefined
The Journal of Symbolic Logic. 2015, 80(1), pp. 301-307. ISSN 0022-4812. eISSN 1943-5886. Available under: doi: 10.1017/jsl.2014.13
Zusammenfassung

In [1], Anscombe and Koenigsmann give an existential ∅-definition of the ring of formal power series F[[t]] in its quotient field in the case where F is finite. We extend their method in several directions to give general definability results for henselian valued fields with finite or pseudo-algebraically closed residue fields.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
510 Mathematik
Schlagwörter
Henselian valuation, existential definability, finite fields, pseudo-algebraically closed fields
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690FEHM, Arno, 2015. Existential ∅-Definability of Henselian Valuation Rings. In: The Journal of Symbolic Logic. 2015, 80(1), pp. 301-307. ISSN 0022-4812. eISSN 1943-5886. Available under: doi: 10.1017/jsl.2014.13
BibTex
@article{Fehm2015Exist-31393,
  year={2015},
  doi={10.1017/jsl.2014.13},
  title={Existential ∅-Definability of Henselian Valuation Rings},
  number={1},
  volume={80},
  issn={0022-4812},
  journal={The Journal of Symbolic Logic},
  pages={301--307},
  author={Fehm, Arno}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/31393">
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:abstract xml:lang="eng">In [1], Anscombe and Koenigsmann give an existential ∅-definition of the ring of formal power series F[[t]] in its quotient field in the case where F is finite. We extend their method in several directions to give general definability results for henselian valued fields with finite or pseudo-algebraically closed residue fields.</dcterms:abstract>
    <dcterms:title>Existential ∅-Definability of Henselian Valuation Rings</dcterms:title>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/31393/1/Fehm_0-287143.pdf"/>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/31393"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:rights>terms-of-use</dc:rights>
    <dc:creator>Fehm, Arno</dc:creator>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/31393/1/Fehm_0-287143.pdf"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-07-08T09:11:41Z</dcterms:available>
    <dcterms:issued>2015</dcterms:issued>
    <dc:language>eng</dc:language>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-07-08T09:11:41Z</dc:date>
    <dc:contributor>Fehm, Arno</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet