KOPS - Das Institutionelle Repositorium der Universität Konstanz

Fully spin-dependent boundary condition for isotropic quasiclassical Green's functions

Fully spin-dependent boundary condition for isotropic quasiclassical Green's functions

Zitieren

Dateien zu dieser Ressource

Dateien Größe Format Anzeige

Zu diesem Dokument gibt es keine Dateien.

MACHON, Peter, Wolfgang BELZIG, 2015. Fully spin-dependent boundary condition for isotropic quasiclassical Green's functions

@unpublished{Machon2015Fully-31007, title={Fully spin-dependent boundary condition for isotropic quasiclassical Green's functions}, year={2015}, author={Machon, Peter and Belzig, Wolfgang} }

<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/31007"> <dc:contributor>Machon, Peter</dc:contributor> <dc:creator>Machon, Peter</dc:creator> <dc:contributor>Belzig, Wolfgang</dc:contributor> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:title>Fully spin-dependent boundary condition for isotropic quasiclassical Green's functions</dcterms:title> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-05-21T09:09:35Z</dcterms:available> <dc:language>eng</dc:language> <dc:creator>Belzig, Wolfgang</dc:creator> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/41"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/41"/> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <dcterms:abstract xml:lang="eng">Transport in superconducting heterostructures is very successfully described with quasiclassical Green's functions augmented by microscopically derived boundary conditions. However, so far the spin-dependence is in the diffusive approach included only for limiting cases. Here, we derive the fully spin-dependent boundary condition completing the Usadel equation and the circuit theory. Both, material specific spin-degrees of freedom and spin-dependent interface effects, i.e. spin-mixing and polarization of the transmission coefficients are treated exactly. This opens the road to accurately describe a completely new class of mesoscopic circuits including materials with strong intrinsic magnetic structure. We also discuss several experimentally relevant cases like the tunnel limit, a ferromagnetic insulator with arbitrarily strong magnetization and the limit of small spin-mixing.</dcterms:abstract> <dcterms:issued>2015</dcterms:issued> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/31007"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-05-21T09:09:35Z</dc:date> </rdf:Description> </rdf:RDF>

Das Dokument erscheint in:

KOPS Suche


Stöbern

Mein Benutzerkonto