Moment problem in infinitely many variables
Moment problem in infinitely many variables
No Thumbnail Available
Files
There are no files associated with this item.
Date
2014
Authors
Editors
Journal ISSN
Electronic ISSN
ISBN
Bibliographical data
Publisher
Series
ArXiv-ID
International patent number
Link to the license
oops
EU project number
Project
Open Access publication
Collections
Title in another language
Publication type
Preprint
Publication status
Published in
Abstract
The multivariate moment problem is investigated in the general context of the polynomial algebra R[xi∣i∈Ω] in an arbitrary number of variables xi, i∈Ω. The results obtained are sharpest when the index set Ω is countable. Extensions of Haviland's theorem [Amer. J. Math., 58 (1936) 164-168] and Nussbaum's theorem [Ark. Math., 6 (1965) 179-191] are proved. Lasserre's description of the support of the measure in terms of the non-negativity of the linear functional on a quadratic module of R[xi∣i∈Ω] in [Trans. Amer. Math. Soc., 365 (2013) 2489-2504] is shown to remain valid in this more general situation. The main tool used in the paper is an extension of the localization method developed by the third author.
Summary in another language
Subject (DDC)
510 Mathematics
Keywords
Conference
Review
undefined / . - undefined, undefined. - (undefined; undefined)
Cite This
ISO 690
GHASEMI, Mehdi, Salma KUHLMANN, Murray MARSHALL, 2014. Moment problem in infinitely many variablesBibTex
@unpublished{Ghasemi2014Momen-30958, year={2014}, title={Moment problem in infinitely many variables}, author={Ghasemi, Mehdi and Kuhlmann, Salma and Marshall, Murray} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/30958"> <dc:creator>Kuhlmann, Salma</dc:creator> <dc:language>eng</dc:language> <foaf:homepage rdf:resource="http://localhost:8080/"/> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/30958"/> <dc:creator>Marshall, Murray</dc:creator> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-05-18T08:26:26Z</dc:date> <dc:creator>Ghasemi, Mehdi</dc:creator> <dcterms:abstract xml:lang="eng">The multivariate moment problem is investigated in the general context of the polynomial algebra R[xi∣i∈Ω] in an arbitrary number of variables xi, i∈Ω. The results obtained are sharpest when the index set Ω is countable. Extensions of Haviland's theorem [Amer. J. Math., 58 (1936) 164-168] and Nussbaum's theorem [Ark. Math., 6 (1965) 179-191] are proved. Lasserre's description of the support of the measure in terms of the non-negativity of the linear functional on a quadratic module of R[xi∣i∈Ω] in [Trans. Amer. Math. Soc., 365 (2013) 2489-2504] is shown to remain valid in this more general situation. The main tool used in the paper is an extension of the localization method developed by the third author.</dcterms:abstract> <dc:contributor>Marshall, Murray</dc:contributor> <dc:contributor>Ghasemi, Mehdi</dc:contributor> <dcterms:issued>2014</dcterms:issued> <dcterms:title>Moment problem in infinitely many variables</dcterms:title> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-05-18T08:26:26Z</dcterms:available> <dc:contributor>Kuhlmann, Salma</dc:contributor> </rdf:Description> </rdf:RDF>
Internal note
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Examination date of dissertation
Method of financing
Comment on publication
Alliance license
Corresponding Authors der Uni Konstanz vorhanden
International Co-Authors
Bibliography of Konstanz
Yes