Portfolio Optimization under Nonlinear Utility

Zitieren

Dateien zu dieser Ressource

Dateien Größe Format Anzeige

Zu diesem Dokument gibt es keine Dateien.

HEYNE, Gregor, Michael KUPPER, Ludovic TANGPI, 2016. Portfolio Optimization under Nonlinear Utility. In: International Journal of Theoretical and Applied Finance. 19(5), 1650029. ISSN 0219-0249. eISSN 1793-6322. Available under: doi: 10.1142/S0219024916500291

@article{Heyne2016Portf-30887.2, title={Portfolio Optimization under Nonlinear Utility}, year={2016}, doi={10.1142/S0219024916500291}, number={5}, volume={19}, issn={0219-0249}, journal={International Journal of Theoretical and Applied Finance}, author={Heyne, Gregor and Kupper, Michael and Tangpi, Ludovic}, note={Article Number: 1650029} }

<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/30887.2"> <dcterms:title>Portfolio Optimization under Nonlinear Utility</dcterms:title> <dc:contributor>Heyne, Gregor</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/39"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-02-06T14:55:08Z</dcterms:available> <dc:contributor>Tangpi, Ludovic</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/39"/> <dcterms:issued>2016</dcterms:issued> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-02-06T14:55:08Z</dc:date> <dcterms:abstract xml:lang="eng">This paper studies the utility maximization problem of an agent with non-trivial endowment, and whose preferences are modeled by the maximal subsolution of a BSDE. We prove existence of an optimal trading strategy and relate our existence result to the existence of a maximal subsolution to a controlled decoupled FBSDE. Using BSDE duality, we show that the utility maximization problem can be seen as a robust control problem admitting a saddle point if the generator of the BSDE additionally satisfies a specific growth condition. We show by convex duality that any saddle point of the robust control problem agrees with a primal and a dual optimizer of the utility maximization problem, and can be characterized in terms of a BSDE solution.</dcterms:abstract> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/30887.2"/> <dc:language>eng</dc:language> <dc:creator>Kupper, Michael</dc:creator> <dc:contributor>Kupper, Michael</dc:contributor> <dc:creator>Heyne, Gregor</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Tangpi, Ludovic</dc:creator> </rdf:Description> </rdf:RDF>

Das Dokument erscheint in:

Versionsgeschichte

Version Dokument Datum Zusammenfassung Publikationsstatus

* Ausgewählte Version

KOPS Suche


Stöbern

Mein Benutzerkonto