Decay estimates for the Cauchy problem for the damped extensible beam equation
Decay estimates for the Cauchy problem for the damped extensible beam equation
Date
2015
Editors
Journal ISSN
Electronic ISSN
ISBN
Bibliographical data
Publisher
Series
Konstanzer Schriften in Mathematik; 335
URI (citable link)
International patent number
Link to the license
EU project number
Project
Open Access publication
Collections
Title in another language
Publication type
Working Paper/Technical Report
Publication status
Published in
Abstract
The extensible beam equation proposed by Woinovsky-Krieger is a fourth order dispersive equation with nonlocal nonlinear terms. In this paper we study the Cauchy problem of the extended model by Ball who proposed the model with external and structural damping terms. This includes a Kelvin-Voigt damping. We show the unique global existence of solution for this problem and give a precise description of the decay of solutions in time.
Summary in another language
Subject (DDC)
510 Mathematics
Keywords
Conference
Review
undefined / . - undefined, undefined. - (undefined; undefined)
Cite This
ISO 690
RACKE, Reinhard, Shuji YOSHIKAWA, 2015. Decay estimates for the Cauchy problem for the damped extensible beam equationBibTex
@techreport{Racke2015Decay-30730, year={2015}, series={Konstanzer Schriften in Mathematik}, title={Decay estimates for the Cauchy problem for the damped extensible beam equation}, number={335}, author={Racke, Reinhard and Yoshikawa, Shuji} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/30730"> <dc:contributor>Yoshikawa, Shuji</dc:contributor> <dc:rights>terms-of-use</dc:rights> <dc:creator>Yoshikawa, Shuji</dc:creator> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/30730/3/Racke_0-279949.pdf"/> <dc:creator>Racke, Reinhard</dc:creator> <dcterms:abstract xml:lang="eng">The extensible beam equation proposed by Woinovsky-Krieger is a fourth order dispersive equation with nonlocal nonlinear terms. In this paper we study the Cauchy problem of the extended model by Ball who proposed the model with external and structural damping terms. This includes a Kelvin-Voigt damping. We show the unique global existence of solution for this problem and give a precise description of the decay of solutions in time.</dcterms:abstract> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-04-14T08:45:48Z</dc:date> <dc:contributor>Racke, Reinhard</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-04-14T08:45:48Z</dcterms:available> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/30730/3/Racke_0-279949.pdf"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dcterms:issued>2015</dcterms:issued> <dcterms:title>Decay estimates for the Cauchy problem for the damped extensible beam equation</dcterms:title> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/30730"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:language>eng</dc:language> </rdf:Description> </rdf:RDF>
Internal note
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Examination date of dissertation
Method of financing
Comment on publication
Alliance license
Corresponding Authors der Uni Konstanz vorhanden
International Co-Authors
Bibliography of Konstanz
Yes