KOPS - The Institutional Repository of the University of Konstanz

The constant angle problem for mean curvature flow inside rotational tori

The constant angle problem for mean curvature flow inside rotational tori

Cite This

Files in this item

Files Size Format View

There are no files associated with this item.

LAMBERT, Ben, 2014. The constant angle problem for mean curvature flow inside rotational tori. In: Mathematical Research Letters. 21(3), pp. 537-551. ISSN 1073-2780. eISSN 1945-001X. Available under: doi: 10.4310/MRL.2014.v21.n3.a10

@article{Lambert2014const-30404, title={The constant angle problem for mean curvature flow inside rotational tori}, year={2014}, doi={10.4310/MRL.2014.v21.n3.a10}, number={3}, volume={21}, issn={1073-2780}, journal={Mathematical Research Letters}, pages={537--551}, author={Lambert, Ben} }

<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/30404"> <dcterms:title>The constant angle problem for mean curvature flow inside rotational tori</dcterms:title> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/30404"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-03-18T14:15:22Z</dcterms:available> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/39"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-03-18T14:15:22Z</dc:date> <dcterms:issued>2014</dcterms:issued> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/39"/> <dc:language>eng</dc:language> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/52"/> <dc:contributor>Lambert, Ben</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/52"/> <dc:creator>Lambert, Ben</dc:creator> <dcterms:abstract xml:lang="eng">We flow a hypersurface in Euclidean space by mean curvature flow (MCF) with a Neumann boundary condition, where the boundary manifold is any torus of revolution. If we impose the conditions that the initial manifold is compatible and does not contain the rotational vector field in its tangent space, then MCF exists for all time and converges to a flat cross-section as t→∞.</dcterms:abstract> </rdf:Description> </rdf:RDF>

This item appears in the following Collection(s)

Search KOPS


Browse

My Account