Rational values of Weierstrass zeta functions
Rational values of Weierstrass zeta functions
Date
2016
Authors
Jones, Gareth O.
Editors
Journal ISSN
Electronic ISSN
ISBN
Bibliographical data
Publisher
Series
URI (citable link)
DOI (citable link)
International patent number
Link to the license
EU project number
Project
Open Access publication
Collections
Title in another language
Publication type
Journal article
Publication status
Published in
Proceedings of the Edinburgh Mathematical Society (PEMS) ; 59 (2016), 4. - pp. 945-958. - ISSN 0013-0915. - eISSN 1464-3839
Abstract
We answer a question of Masser by showing that for the Weierstrass zeta function ζ corresponding to a given lattice Λ, the density of algebraic points of absolute multiplicative height bounded by T and degree bounded by k lying on the graph of ζ, restricted to an appropriate domain, does not exceed c(log T)15, for an effective constant c > 0 depending on k and on Λ. Using different methods, we also give two bounds of the same form for the density of algebraic points of bounded height in a fixed number field lying on the graph of ζ restricted to an appropriate subset of (0; 1). In one case the constant c can be shown not to depend on the choice of lattice; in the other, the exponent can be improved to 12.
Summary in another language
Subject (DDC)
510 Mathematics
Keywords
Weierstrass zeta functions, counting, irrationality
Conference
Review
undefined / . - undefined, undefined. - (undefined; undefined)
Cite This
ISO 690
JONES, Gareth O., Margaret E. M. THOMAS, 2016. Rational values of Weierstrass zeta functions. In: Proceedings of the Edinburgh Mathematical Society (PEMS). 59(4), pp. 945-958. ISSN 0013-0915. eISSN 1464-3839. Available under: doi: 10.1017/S0013091515000309BibTex
@article{Jones2016Ratio-30336, year={2016}, doi={10.1017/S0013091515000309}, title={Rational values of Weierstrass zeta functions}, number={4}, volume={59}, issn={0013-0915}, journal={Proceedings of the Edinburgh Mathematical Society (PEMS)}, pages={945--958}, author={Jones, Gareth O. and Thomas, Margaret E. M.} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/30336"> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:title>Rational values of Weierstrass zeta functions</dcterms:title> <dc:creator>Thomas, Margaret E. M.</dc:creator> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/30336/1/Jones_0-284194.pdf"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:issued>2016</dcterms:issued> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-03-17T12:25:19Z</dc:date> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/30336/1/Jones_0-284194.pdf"/> <dc:contributor>Jones, Gareth O.</dc:contributor> <dc:contributor>Thomas, Margaret E. M.</dc:contributor> <dcterms:abstract xml:lang="eng">We answer a question of Masser by showing that for the Weierstrass zeta function ζ corresponding to a given lattice Λ, the density of algebraic points of absolute multiplicative height bounded by T and degree bounded by k lying on the graph of ζ, restricted to an appropriate domain, does not exceed c(log T)<sup>15</sup>, for an effective constant c > 0 depending on k and on Λ. Using different methods, we also give two bounds of the same form for the density of algebraic points of bounded height in a fixed number field lying on the graph of ζ restricted to an appropriate subset of (0; 1). In one case the constant c can be shown not to depend on the choice of lattice; in the other, the exponent can be improved to 12.</dcterms:abstract> <dc:language>eng</dc:language> <dc:creator>Jones, Gareth O.</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-03-17T12:25:19Z</dcterms:available> <dc:rights>terms-of-use</dc:rights> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/30336"/> </rdf:Description> </rdf:RDF>
Internal note
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Examination date of dissertation
Method of financing
Comment on publication
Alliance license
Corresponding Authors der Uni Konstanz vorhanden
International Co-Authors
Bibliography of Konstanz
Yes