No-reference quality assessment for DCT-based compressed image

Zitieren

Dateien zu dieser Ressource

Dateien Größe Format Anzeige

Zu diesem Dokument gibt es keine Dateien.

WANG, Ci, Minmin SHEN, Chen YAO, 2015. No-reference quality assessment for DCT-based compressed image. In: Journal of Visual Communication and Image Representation. 28, pp. 53-59. ISSN 1047-3203. eISSN 1095-9076

@article{Wang2015No-re-30316, title={No-reference quality assessment for DCT-based compressed image}, year={2015}, doi={10.1016/j.jvcir.2015.01.006}, volume={28}, issn={1047-3203}, journal={Journal of Visual Communication and Image Representation}, pages={53--59}, author={Wang, Ci and Shen, Minmin and Yao, Chen} }

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:dcterms="http://purl.org/dc/terms/" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/30316"> <dc:creator>Shen, Minmin</dc:creator> <dc:creator>Wang, Ci</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-03-16T15:33:28Z</dc:date> <dc:language>eng</dc:language> <dcterms:issued>2015</dcterms:issued> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/30316"/> <dcterms:abstract xml:lang="eng">A blind/no-reference (NR) method is proposed in this paper for image quality assessment (IQA) of the images compressed in discrete cosine transform (DCT) domain. When an image is measured by structural similarity (SSIM), two variances, i.e. mean intensity and variance of the image, are used as features. However, the parameters of original copies are actually unavailable in NR applications; hence SSIM is not widely applicable. To extend SSIM in general cases, we apply Gaussian model to fit quantization noise in spatial domain, and directly estimate noise distribution from the compressed version. Benefit from this rearrangement, the revised SSIM does not require original image as the reference. Heavy compression always results in some zero-value DCT coefficients, which need to be compensated for more accurate parameter estimate. By studying the quantization process, a machine-learning based algorithm is proposed to estimate quantization noise taking image content into consideration. Compared with state-of-the-art algorithms, the proposed IQA is more heuristic and efficient. With some experimental results, we verify that the proposed algorithm (provided no reference image) achieves comparable efficacy to some full reference (FR) methods (provided the reference image), such as SSIM.</dcterms:abstract> <dc:contributor>Wang, Ci</dc:contributor> <dc:creator>Yao, Chen</dc:creator> <dcterms:title>No-reference quality assessment for DCT-based compressed image</dcterms:title> <dc:contributor>Shen, Minmin</dc:contributor> <dc:contributor>Yao, Chen</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-03-16T15:33:28Z</dcterms:available> </rdf:Description> </rdf:RDF>

Das Dokument erscheint in:

KOPS Suche


Stöbern

Mein Benutzerkonto